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1 Executive summary

The computational framework of auditory perception and experience designed
in Two!Ears is implemented as a development software system primarily based on
MATLAB. The evaluation of the Two!Ears model for different live scenarios implies a
deployment system, consisting in the interface of the development system with a robot.
Work package WP5 is in charge of all the necessary ingredients of this deployment. To
assess the active and exploratory features of the computational model and its ability to
handle multimodality, two robot platforms endowed with adequate mobility and multi-
modal perception were designed. Each of them is accompanied by a comprehensive real
time software architecture, entailing a modular low “functional” layer, where components
run concurrently under severe time and communication constraints, and a high “cognitive”
layer, where decisional processes take place. All the functional modules were systematically
submitted to extensive tests.

This deliverable summarizes the achievements of work package WP5 towards the deploy-
ment of the two robotics test beds. Each one consists in the mounting on a differential
wheeled robot of the KEMAR head-and-torso simulator endowed with a controllable
neck degree-of-freedom. By adding a specifically designed anthropomorphic stereoscopic
visual sensor, these platforms can provide translational degrees-of-freedom for long-range
navigation as well as multimodality. The comprehensive, stable, companion real time
software architecture was implemented along the following guidelines: the selection of
the celebrated ROS1 middleware; the use of off-the-shelf ROS-compliant software iff it
is suitable and has been successfully tested by the robotics community; the design of
components specific to the project by means of the model-driven middleware-independent
GenoM3 2 framework, for an improved robustness, sustainability, and code reusability.
Its prominent elements are described, namely: an improved, self-sufficient, MATLAB
bridge to connect the functional layer with multiple MATLAB cognitive processes; custom
integrations of the low-level functions for locomotion and sensor handling under standard
interfaces, so as to enable a transparent interchange of the robot; off-the-shelf widely
used software for simultaneous localization and mapping (SLAM) and planned/reactive
navigation; components for audio and visual streaming; transcoding of a significant part of
the MATLAB based auditory front-end (AFE) into a ROS component for real time con-
current processing; sensory/sensorimotor functions for multiple people detection/tracking,

1 Robot Operating System, http://www.ros.org – This open-source meta-operating system has been
initiated by Willow Garage, and runs on the top of Linux.

2 Generator of Modules v3, https://git.openrobots.org/projects/genom3/wiki/Wiki – This frame-
work is one of the core software component distributed within the open-source collection developed at
CNRS, as a result of two decades of research on real-time architectures for autonomous systems.

1
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1 Executive summary

learning/detection/segmentation of objects, and binaural active azimuth+range sound
source localization.

The manuscript is intended to be synthetic—in that details available in Deliverables
D5.1@m12 and D5.2@m24 are ommitted—but self-contained. To limit its size, the low-cost
integrated binaural sensors (MEMS microphones, spherical binaural heads, ROS-compliant
system-on-chip acquisition and streaming) specifically designed and succesfully deployed
for the “robotics challenge” of the Two!Ears Summer School (September 2015) are not de-
scribed. The interested reader is referred to Deliverables D5.2@m24.
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2 Introduction

The main objective of WP5 is to integrate the whole set of modules from WPs2–4 into a
physical test bed which enables the global evaluation of the Two!Ears computational
framework in scenarios of WP6. This has implied: the design and manufacturing of
a suitable electromechanical device enabling the servocontrol of the neck of a KEMAR
Head-And-Torso Simulator (HATS); the design and implementation of an anthropomorphic
stereovision system perfectly fitted to the face of the KEMAR head; the mounting of two
samples of motorized KEMAR HATSs on two differential wheeled mobile robots so as
to offer translation degrees-of-freedom and enable long-range motions. A comprehensive
modular real time software architecture has been deployed with this hardware. Its lower
functional layer is made with components which run concurrently under severe time
constraints and communicate by requests or data in real time. It is bridged with the upper
cognitive layer. Therein, decisional processes take place, which handle symbolic data
and are subject to less critical constraints. Extensive evaluations of all atomic elements
have been conducted so as to ensure their satisfactory behaviour when case studies are
addressed through the whole, integrated, deployment system.

2.1 Structure of the report and major achievements

The present document is organized as follows.

Chapter 3 recalls fundamental elements of the robotics software architecture. General
considerations are reviewed on how to bridge the gap between, on the one hand, the
Two!Ears conceptual model, and, on the other hand, the functional and cognitive layer of
the real time software architecture supporting the deployed test beds.

Chapter 4 reports the work conducted on Two!Ears test beds. Hardware solutions
and their companion low-level software components are depicted, based on a KEMAR
Head-And-Torso Simulator. These include: binaural audio acquisition and streaming;
the nonintrusive motorization of the neck for head rotational motions; the nonintrusive
addition of a stereoscopic sensor for incorporation of multimodality; the assembly of two
samples of the HATS with two mobile platforms with similar kinematics for exploratory
navigation.

Chapter 5 describes the transcoding of a subset of the Auditory Front End (AFE,
developed in WP2 for MATLAB based low-level audio processing) into the real-time
software architecture. A new C++ implementation is detailed, focusing on performance
through concurrent processing.

3



2 Introduction

Chapter 6 reports works conducted on sensorimotor functions for active sound source
localisation, and visual functions for multiple people detection and tracking, as well as
visual based learning, detection and localisation of objects.

Appendix 7 concludes the manuscript.

Note that ingredients specifically developed for the “robotics challenge” of the Two!Ears
Summer School in September 2015 are not reviewed here, as they were extensively described
in Chapter 7 of Deliverable 5.2@m24.

2.2 Structure of the report vs Tasks Decomposition

WP5 is split into three tasks. However, for easier readability, the manuscript is not
organized along these. Rather, it is organized along the main achievements, starting from
hardware and going to software.

• Task 5.1 Test bed: robot platforms and integrated audio/audiovisual
sensors. A key achievement has concerned the deployment of two sustainable visio-
auditive platforms suited to the experiments envisaged in the project. An existing
robust mobile robot, named Jido, was remanufactured in depth at CNRS during
Year 2, and another mobile robot named Odi, was specified by UPMC, and received
during Year 3 (Section 4.4). The KEMAR head-and-torso simulator (HATS) with its
motorized azimuth degree of freedom (Section 4.2), implemented during Year 1, was
slightly revisited in Year 3 and mounted on both platforms. A stereoscopic sensor
was installed on the KEMAR head (Section 4.3) of CNRS. It consists in the assembly
of 3D-printed glasses designed from the head CAD model and of micro-cameras
with suitable lenses. Drivers were specifically developed for the KEMAR HATS,
including homing, proprioception and servocontrol. They were encapsulated into a
software component for the aforementioned ROS middleware. Low-level libraries
for locomotion, teleoperation, proprioceptive and exteroceptive sensing were also
specifically developed for Jido and integrated in a custom ROS stack. Odi was
delivered with a ROS stack ensuring similar functions. Both packages have the same
standard interface (Section 4.5) required by higher-level off-the-shelf ROS stacks, so
that Jido and Odi can be interchanged with no software change.

• Task 5.2 Software architecture of the Two!Ears framework. The real time
software architecture supporting the deployment system has reached a mature,
stable state. It is well suited to experiments on the basis of an auditory or audio-
visual mobile robot. Its functional layer is built on the top of ROS (Section 3.1). It
includes off-the-shelf widely-used open-source ROS stacks (change of frames handling,
path planning, obstacle avoidance, reactive navigation, SLAM, stereovision from
the used pair of micro-cameras) as well as components specifically designed under
GenoM3/ROS for the needs of the project: audio acquisition (Section 4.1); control of
the KEMAR head (Section 4.2); multiple people detection and tracking (Section 6.2);
objects detection and segmentation (Section 6.3); audio-motor binaural localization

4



2.3 Overview of (visio-)auditive robotics test beds

and sensorimotor feedback control (Section 6.1); transcoding of a significant part of
the Auditory Front End (Section 5). The MATLAB bridge (Section 3.2), enabling
the communication between the functional layer and one or multiple MATLAB
processes implementing the cognitive layer, was fully revisited in Year 2 so as to
be suited to GenoM3/ROS as well as native ROS components and to improve its
overall performance.

• Task 5.3 Modular tests and evaluations. Extensive atomic tests have been
conducted on the hardware and software described above. The outcomes of Tasks
5.1 and 5.2 reinforce possibilities of interfacing them with developments in work
packages WP2, WP3, and WP4, so as to address challenging scenarios.

2.3 Overview of (visio-)auditive robotics test beds

This section briefly introduces the platforms supporting the Two!Ears deployment system
(Figure 2.1).

Figure 2.1: From left to right: the KEMAR HATS; the initially planned PR2 robot; the Jido
and Odi Two!Ears test beds, respectively from CNRS and UPMC .

2.3.1 The KEMAR head-and-torso-simulator

The KEMAR (Knowles Electronics Manikin for Acoustic Research) Head-And-Torso
Simulator (HATS) is widely used for reproducible human-like binaural acquisition (e.g.,
to assess electroacoustic devices), thanks to its ability to mimic acoustic scattering and
reflections on human upper bodies. It is based on worldwide average human male and
female head and torso dimensions and meets the requirements of ANSI S3.36/ASA58-
1985 and IEC 60959:1990. The 45BB-2 model used in the project is made up with
a ruggedized plastic composite. Its two ears, which can be selected from six different
types, can be accurately positioned and easily dismantled for ear-canal exchange or
calibration.

5



2 Introduction

2.3.2 The mobile platforms Jido (CNRS) and Odi (UPMC)

The mobile manipulator PR2 from Willow Garage had initially been selected as the
Two!Ears robotics test bed because of its openness, versatility (being undoubtedly
the emblematic robot based on the ROS middleware), and dissemination (e.g., CNRS
and UPMC respectively own 2+1 units). However, during Year 1, a great number of
failures were reported on the two PR2 robots from CNRS (caster and arm control boards,
EtherCAT hub, actuators, sensors, batteries,. . . ). Furthermore, it appeared that the
sporadic and unpredictable fan cooling of their four-caster bases induced a very loud
noise. So, the PR2 was discarded. It was replaced by two robots, namely a refurbished
existing platform at CNRS named Jido, and a new platform at UPMC named Odi.
Importantly, both test beds have similar kinematics, in that they are differential wheeled
non-holonomic. Contrarily to what would have been possible with the PR2 , they can
carry the whole KEMAR HATS. As shown later, they can be accessed through the
same standard interface, which enables reproducible research inside and outside the
consortium.

6



3 The Two!Ears deployment software
architecture

The Two!Ears computational model of auditory perception and experience entails
low-level audio processing (developed in WP2), high-level feature extraction and
reasoning (WP3), as well as various sorts of feedback (WP4). The development system,
implemented in MATLAB, enables tests of these elements on simulated data, e.g., gener-
ated in WP1. Work package WP5 is in charge of the synthesis of a deployment system
enabling the confrontation of concepts and algorithms against real-life scenarios defined
in WP6 and in connection with WP1. This deployment system is based on robotics test
beds endowed with mobility and multimodality. It is grounded in a comprehensive generic
software architecture, built on the top of their instrumentation and of the encapsulation
of their basic capabilities into standard interfaces.

In this chapter, Section 3.1 first describes how the Two!Ears conceptual framework is
turned into a component-based deployment software. The celebrated ROS middleware and
GenoM3 framework constitute the cornerstone of the real time architecture supporting
its lowest layer. The development system, designed in WP2,WP3,WP4 and written
in MATLAB, is also hosted by the deployment software. A solution bridging both
layers is exposed in Section 3.2. Last, installation and licensing aspects are evoked in
Section 3.3.

3.1 From the conceptual framework to a component-based
software architecture

3.1.1 Functional and decisional layers

From a robotics viewpoint, any comprehensive software architecture entails at least two
layers:

• The functional layer consists of components which may run concurrently under severe
time and communication constraints. These are in charge of sensory/sensorimotor
functions, such as: locomotion; acquisition, streaming and low-level processing of
proprioceptive or exteroceptive data; localisation; path planning; reactive navigation
with obstacle avoidance; etc. As many components are in interaction with the
environment, several local perception-action loops take place in this layer. Typical
programming languages are C or C++. Components are implemented on the top of

7



3 The Two!Ears deployment software architecture

a dedicated software called middleware, which ensures their real time control and
communication.

• Higher in the architecture, the decisional/cognitive layer hosts deliberation primitives
(learning, goal reasoning, task planning, deliberate action/perception and monitoring).
These abilities take place at a more abstract level, under lighter time constraints.
They are typically implemented under an interpreted language: symbolic reasoning
system, supervisor, etc.

In Two!Ears, the functional layer must basically provide components for audio (binaural)
and visual (stereoscopic) data streaming, as well as for motion and navigation. The cel-
ebrated ROS middleware, exposed in Section 3.1.3, has been selected to support their
control and communication. The cognitive part of WP3, as well as top-down hypothesis-
driven feedbacks of WP4, are part of the development system and straightly take place
within the decisional layer. So, quite uncommonly in a robotics context, this layer is
written in MATLAB. An intermediate set of abilities can be identified in-between, which
implementation can either come in MATLAB or in C/C++ components, depending on
the need for responsiveness. For instance, the Auditory Front-End (AFE) was developed
in WP2 for monaural and binaural processing, and primarily written in MATLAB. In
anticipation of large-scale experiments running on a single computer, part of it has been
implemented in C++ as a ROS component, see Section 5. Another example is related to
visual functions. Low-level routines such as calibration or image rectification can be incor-
porated in the component in charge of streaming. More elaborated functions such as object
detection and segmentation, or human detection and tracking, could be implemented in
MATLAB. However, they must run at high frequencies and thus also come into dedicated
components of the functional layer, see Sections 6.2 and 6.3.

To conclude, Figure 3.1 summarizes the way how the Two!Ears model can be matched with
a component-based robotics deployment software. A specific software bridge must be in-
serted between the upper decisional and lower functional layers, i.e., between theMATLAB-
based and ROS-based levels. It is presented in Section 3.2.

3.1.2 Component-based architecture, data and control flows

In robotics, component-based architectures, where components are concurrent and in-
dependent processes, have become the de facto standard. Each software component is
dedicated to a given task, from low-level control to high-level processing. Components of
the functional layer communicate with each other with the help of a software piece called
the middleware. Two essential concepts are involved:

Data flow refers to the exchange of data between components. Data routing from one
component to another is ensured by the middleware.

Control flow denotes calls to services that components typically provide to modify their be-
haviour. The availability of a component’s service is also handled by the middleware.

8



3.1 From the conceptual framework to a component-based software architecture

WP5 TWO!EARS MEETING - TOULOUSE - 2015/09/17-18

ROBOTICS SOFTWARE ARCHITECTURE

How to organize into Functional/Cognitive/In-between levels?!

!

!

!

!

!

!

!

Underlying middleware: ROS — Generator of Modules: GenoM3, CNRS!
‣ Model-driven engineering - Decoupling architecture / algorithmic core!
‣ Reusability - Robustness - Sustainability - Middleware independency

Tw
o!

Ea
rs

 m
od

el

7

Visual Modalities dedicated to a Tour-Guide Robot 13

Fig. 18 Hand configurations tracking on a sequence involv-
ing cluttered background when fusing color and shape cues
in the particles likelihood.

where O (resp. C) gathers the indexes of the ROIs corre-
sponding to open (resp. closed) fingers, i = 0 indexes the
palm, and subscripts/superscripts k and ref have been
omitted for compactness reason. Pratically, the smaller
is the color discrepancy between a given ROI and hC

ref

or h¬C
ref (depending on the open fingers of the tested con-

figuration), the higher is its associated probability. The
tracker initialization logically involves skin-blobs detec-
tion.

Evaluations have been performed for this modality.
The state vector becomes Xk = (x′

k, c′
k)′, where the en-

try θk of the continuous part xk = (uk, vk, θk, sk)′ en-
codes the template orientation. The continuous state
components are assumed to evolve according to mutu-
ally independent Gaussian random walk models. The
discrete state entry ck indexes the hand configurations
and evolves according to the predefined transition prob-

abilities p(rk|r(i)
k−1).

Table 3 shows the results of a quantitative compari-
son with or without cues fusion for heavy cluttered back-
ground. It can be noticed that fusing shape and color
seldom leads to a posture misclassification. Figure 18
shows a recognition run for such a scenario.

Shape cue Shape and color cues

N= 100 200 400 100 200 400

61% 83% 83% 94% 94% 94%

0% 0% 0% 100% 100% 100%

8% 30% 17% 75% 80% 83%

41% 43% 43% 70% 96% 96%

100% 100% 100% 100% 100% 94%

1% 0% 7% 95% 95% 96%

0% 0% 0% 85% 97% 97%

Total 13% 18% 19% 89% 93% 94%

Table 3 Average recognition rate per configuration vs par-
ticles number on sequences including cluttered background
with or without multiple cues fusion.
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Fig. 19 Rackham’s layered software architecture.

8 Integration on Rackham robot

8.1 Outline of the overall software architecture

The above visual functions were embedded on the Rack-
ham robot. To this aim, Rackham is fitted with the
“LAAS” layered software architecture introduced on
Figure 19 and thoroughly presented in [1].

On the top of the hardware (sensors and effectors),
the functional level encapsulates all the robot’s action
and perception capabilities into controllable communi-
cating modules, operating at very strong temporal con-
straints. The executive level activates these modules,
controls the embedded functions, and coordinates the
services depending on the task high-level requirements.
Finally, the upper decision level copes with task plan-
ning and supervision, while remaining reactive to events
from the execution control level.

Passive and active interaction with human beings is
mainly established through the following components:
the dynamic ”obstacles” detectors (Aspect and SonO),
the 3D animated face with speech synthesis, displays
and inputs from the touch screen. The vocal synthesis is
highly enriched by a 3D animated head displayed on the
screen. This talking head, or clone (Figure 2), is devel-
oped by the Institut de la Communication Parlée4. It is
based on a very accurate articulatory 3D model of the
postures of a speaking locutor, and enjoys realistic syn-
thetic rendering thanks to 3D texture projection. From a
given text, the speech synthesizer produces coordinated
voice and facial movements (jaw, teeth, lips, etc.). The
directions of the head and of the eyes can be dynamically
controlled. The clone appears in front of the touch-screen
whenever Rackham speaks, making it more human-like.
Finally, during the guidance mission through the mu-
seum, the robot entertains and informs the public about
the encountered exhibits in documented, educationally
effective ways. More details regarding these modules can
be found in [3].

4 see the URL: www.icp.inpg.fr.
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Figure 3.1: From the Two!Ears computational model (right) to a real time robotics software
architecture (left).

Calls to services can be emitted by any other component of the functional layer—referred
to as a Remote Procedure Call (RPC). They can also be emitted by a piece of software
of the decisional layer (software monitoring the state of the robot, supervisor,. . . ) or by
a user by means of a generic interpreter. Figure 3.2 illustrates these concepts on a toy
model.
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Figure 3.2: A simple component-based architecture to perform object detection in images. Two
components are involved: one acquires images from a camera and streams them; the other runs an
object detection algorithm. The data flow from the first component to the second one is shown in
blue. Both components provide services that the decisional layer can call, shown in red. A Remote
Procedure Call (RPC) is also illustrated here by a dashed red arrow.
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3 The Two!Ears deployment software architecture

Component-based software architectures offer great benefits in robotics (Brooks et al.,
2005), addressing typical issues such as modularity (so that the architecture can be
distributed over a network of host machines), re-usability (common components can be
used across robots without having to recode them), scalability, and even formal proofs of
dependability.

3.1.3 ROS , a software platform for robotics

ROS (Robot Operating System) is a widely known software platform in robotics. It not only
provides a middleware, but also implements a wide range of commonly-used functionalities
into software components (such as localisation, mapping, path planning, obstacle avoidance,
etc.), with a build system and a packaging system for easy compilation and installation.
As claimed by the growing ROS community, ROS was built from the ground up to encourage
open-source collaborative robotics software development. This makes ROS a common
choice as a robotic software platform, as it is for Two!Ears.

ROS embraces the principles of component-based software architectures, allowing concur-
rent and distributed computation, software reuse and rapid testing (O’Kane, 2013). The
main ROS terminology is summarized here:

Nodes Software components using ROS middleware are called ROS nodes. They are
independent processes running on one or several host machines.

Topics and messages Data flows are called topics. A node that outputs data publishes on
a topic. A node that inputs data subscribes to a topic. The data elements flowing on
topics are called messages. Each message is made of various data fields forming part
of a data structure called message type. As a given topic only carries one message
type, the term topic type is equally used.

Services and actions Nodes can provide services to control them. A service may take input
parameters at its invocation, and may return output parameters upon its completion.
Services that take a long time to execute (e.g, navigating along a planned path) are
rather defined as actions, which provide feedback mechanisms during their execution.

Software in ROS is organized in packages. A package can contain ROS nodes, useful
datasets, configuration files, etc. ROS packages are themselves organized into stacks,
which are the primary mechanism in ROS for distributing software. For instance, the
ROS navigation stack contains many packages dedicated to the navigation of a mobile
base in a learnt map of its environment.

The officially supported platform for ROS is GNU/Linux Ubuntu. Different versions
of ROS exist, with compatibility restrictions on Ubuntu versions1. Developments for
Two!Ears started using ROS groovy on Ubuntu 12.04 LTS, and now use ROS indigo on
Ubuntu 14.04 LTS as the final version.

1 cf. ROS Enhancement Proposal 3: http://www.ros.org/reps/rep-0003.html.
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3.1 From the conceptual framework to a component-based software architecture

3.1.4 GenoM3 , a framework to design robotic components

The development of robotic components can be significantly improved by means of a tool
called GenoM3 (Generator of Modules, version 3 )2. As a result of two decades of research
on real time architectures for autonomous systems (Alami et al., 1998)(Mallet et al., 2010),
GenoM3 allows to develop robust, middleware-independent software components thanks
to a model-driven approach, presented below on a toy example.

A GenoM3 component is first defined by a description file, called the dotgen file, with
the .gen extension. This file gathers in a single place all the definitions related to the
component’s interface, its control and data flows in particular. A typical installation of the
GenoM3 framework includes a toy component named demo, that controls the movement
of a fictional robot along a single axis. A simple dotgen file for the demo component could
look like this3:

component demo {

struct demostate {
double position ; /* current position */
double speed; /* current speed */

};

port out demostate Mobile ;

task motion {
period 400 ms;

};

ids {
demostate state;

};

activity GotoPosition (
in double posRef = 0 : "Goto position in m") {

doc "Move to the given position ";
task motion ;
codel <start > gpStartEngine () yield exec;
codel <exec > gpGotoPosition (in posRef , inout state ,

out Mobile ) yield pause ::exec , stop;
codel <stop > gpStopEngine () yield ether;

};
};

2 The GenoM3 project is hosted at https://git.openrobots.org/projects/genom3.
3 The actual dotgen file of the demo component is more complete, deliberately simplified here for clarity

purposes. It is available at http://trac.laas.fr/git/demo-genom.
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3 The Two!Ears deployment software architecture

On the basis of this dotgen model, GenoM3 automatically generates real time code for
tasks sequencing, middleware communication, etc. It also generates skeletons of functions
that implement the algorithmic core run by the component. So, the developer just has to
fill them with algorithms, written in separate C or C++ source files, possibly linking to
external libraries.

The syntax is explained in detail below.

Component definition

component demo {
...

};

This defines a component named demo. As a key feature, GenoM3 allows to develop
middleware-independent components, i.e. demo can be compiled for different middleware
solutions without changing its source code. Middleware-dependent code is automatically
generated by GenoM3 . A clear separation of concerns between the algorithmic core and the
middleware is thus conducted, helping towards an improved design of robotic components.
Among the supported middleware solutions, GenoM3 can create components for ROS . In
this case, the built demo program is a genuine ROS node.

Data types

struct demostate {
double position ; /* current position */
double speed; /* current speed */

};

Data types, such as the structure demostate, use a subset of the OMG IDL language. It
allows generic definitions that can be shared between components.

Ports (data flows)

port out demostate Mobile ;

Ports are in charge of data flows coming in or out of the component (when using ROS
middleware, they translate to ROS topics). Here, an output port named Mobile, exporting
data of type demostate, is defined. It publishes the current position and speed of the
fictional mobile robot to the external world.

12



3.1 From the conceptual framework to a component-based software architecture

Tasks

task motion {
period 400 ms;

};

A GenoM3 component can have multiple concurrent execution tasks. These tasks run the al-
gorithmic core, made of atomic, non preemptable routines called codels (for “code elements”,
see the definition of services below). Here a periodic task motion is declared, to be further
used in order to run a service GotoPosition to move the robot.

Internal Data Structure

ids {
demostate state;

};

The ids tag defines the Internal Data Structure of the component. Memory sharing
between concurrent tasks is safely handled by GenoM3 through this data structure. The
present IDS contains one field named state of type demostate. It internally holds the
current speed and position of the robot at any time during execution.

Services (control flows)

activity GotoPosition (
in double posRef = 0 : "Goto position in m") {

doc "Move to the given position ";
task motion ;

codel <start > gpStartEngine () yield exec;
codel <exec > gpGotoPosition (in posRef , inout state ,

out Mobile ) yield pause ::exec , stop;
codel <stop > gpStopEngine () yield ether;

};

Last, a GenoM3 component can define services. They are either called functions for small
operations which should be executed and finished almost instantaneously (similar to ROS
services), or activities for operations that need time to perform (similar to ROS actions).
A function consists of a single codel, while an activity is defined by a finite state machine,
with one codel per state.

Here, an activity named GotoPosition is defined, run by the above task motion. It has
one input parameter posRef that specifies the reference position to be reached by the
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fictional robot. The state machine starts with a start codel, yielding to an exec codel
that progressively moves the robot towards the reference position. During execution,
the current position and speed are read from the IDS and exported on the output
port. Once the reference is reached, the stop codel is executed. Transitions between
codels happen at the period of the task, and the service can be interrupted during a
transition.

To summarize

GenoM3 facilitates the development of essential features for robotic components, such as the
definition of finite state automata with an optional clock as seen above, task concurrency
and memory sharing between concurrent tasks. Other valuable properties were not
illustrated in this example, such as clean interruption mechanisms and efficient error
handling. Using the GenoM3 framework results in highly robust, sustainable, reusable and
middleware-independent robotic components. Though not used in Two!Ears, GenoM3
can also be coupled with formal validation and verification tools4.

3.2 A software bridge between the deployment and
development systems

3.2.1 Bridging ROS and MATLAB

As aforementioned, the Two!Ears comprehensive software architecture includes an
upper layer running MATLAB and a lower layer supported by ROS on a robotic platform.
Therefore, a bridge between MATLAB and ROS is needed to handle control and data flows
between the two layers. While being a popular need, the interface of MATLAB and ROS is
a complex task giving rise to many usability concerns (Corke, 2015).

In January 2014, The MathWorksTM provided free ROS support through the ROS I/O
Package, but with notable drawbacks such as the impossibility to call ROS services. So,
during Year 1, a custom software bridge was designed at CNRS , suited to control and
data exchange with GenoM3 components by taking advantage of generic tools provided
by GenoM3 , exposed below in 3.2.2. In early 2015, The MathWorksTM released the
Robotics System Toolbox for MATLAB R2015a or later, featuring better ROS support,
and removed the former ROS I/O Package from its website.5. Meanwhile, in Year 2, the
bridge from CNRS was fully revisited so as to cope with GenoM3 as well as native ROS

4 BIP/D-Finder for instance, http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.
html. In collaboration with our colleagues from CNRS who designed GenoM3 , the formal analysis of
the GenoM3/ROS component specifically developed for binaural audio streaming is planned shortly
after the end of the project, so that various temporal properties can be formally assessed.

5 cf. http://www.mathworks.com/matlabcentral/answers/195837-why-am-i-not-able-to-find-
the-ros-i-o-package-previously-available-on-matlab-central.
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3.2 A software bridge between the deployment and development systems

components with improved performance. The final bridge and the Robotics System Toolbox
are compared in Section 3.2.4.

3.2.2 Taking advantage of the GenoM3 framework with the genomix server

The GenoM3 framework, presented in Section 3.1.4, allows to develop robust, middleware-
independent robotic components of a software architecture. It also comes with a set of
useful tools to control them. In particular, genomix6 is a generic server that can receive
HTTP requests to call services and read data flows provided by GenoM3 components,
in a middleware-independent way. A Tcl client7 of this server originally completes the
GenoM3 software suite. In Year 1, a similar client for MATLAB was developed, fully
revised in Year 2 and released in open-source under the name matlab-genomix8. In
addition, in Year 2, a server called rosix9 was added to the suite in order to address any
native ROS node in a generic way, using the same HTTP interface as genomix. With
matlab-genomix as a client of genomix and rosix servers, this solution gives a complete
interface between MATLAB and GenoM3 or native ROS components, as illustrated in
Figure 3.3.

matlab−genomix

MATLAB

control

data

genomix

HTTP

communication

component

GenoM3/ROS

ROS node

middleware

independent

rosix

Figure 3.3: Use of genomix and rosix to bridge MATLAB and ROS . genomix allows to control
GenoM3 components and read their data flows independently of the middleware, while rosix can
control and read data from any ROS node of the functional layer. matlab-genomix can be a client
of any genomix or rosix server.

6 https://git.openrobots.org/projects/genomix
7 https://git.openrobots.org/projects/tcl-genomix
8 https://git.openrobots.org/projects/matlab-genomix
9 https://git.openrobots.org/projects/rosix
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3.2.3 Sample use of the matlab-genomix software bridge

The GenoM3 demo software component, introduced in Section 3.1.4, controls the movement
of a fictional robot along a single axis. It provides a service named GotoPosition to move
the robot to a target position, and an output port Mobile exporting the current position
and speed of the robot. This section sketches the way how it can be controlled via the
matlab-genomix bridge.

Let us assume that the demo component is running on a computer named host-machine,
along with the genomix server. From any computer running MATLAB, a connection to
genomix can be established with:
>> client = genomix . client ('host - machine :8080 ');

A client handle is returned. It can be used to load the demo component inMATLAB:
>> demo = client .load('demo ')

demo =
component with properties :

Stop: [ function_handle ]
GetSpeed : [ function_handle ]
SetSpeed : [ function_handle ]

Mobile : [ function_handle ]
kill: [ function_handle ]

GotoPosition : [ function_handle ]

The returned handle holds methods specifically named after the services (e.g. GotoPosition)
and ports (e.g. Mobile) that the demo component provides. matlab-genomix exploits
MATLAB dynamic properties10 to create these methods on-the-fly. Let us for instance call
the GotoPosition service to move the fictional robot one meter ahead:
>> demo. GotoPosition (1.0);

This call is blocking, which means that the MATLAB prompt comes back only once the
robot has reached the targeted position. This allows to simply wait for the completion of
the service. A non-blocking call can also be made to perform other tasks in MATLAB
while the service is running:
>> r = demo. GotoPosition ('-a', 1.0);

This hands back the MATLAB prompt immediately. The service output status can be
checked later using the returned request handle r. Last, let us see how to read data from
the Mobile port:

10 cf. https://www.mathworks.com/help/matlab/matlab_oop/dynamic-properties--adding-
properties-to-an-instance.html.

16

https://www.mathworks.com/help/matlab/matlab_oop/dynamic-properties--adding-properties-to-an-instance.html
https://www.mathworks.com/help/matlab/matlab_oop/dynamic-properties--adding-properties-to-an-instance.html


3.2 A software bridge between the deployment and development systems

>> p = demo. Mobile ();
>> p. Mobile
ans =

position : 1.0
speed: 0.0

The current robot position and speed are retrieved this way inMATLAB.

The above example only shows basic functionalities provided by matlab-genomix. The
software comes with a more detailed tutorial11.

3.2.4 Comparison between matlab-genomix and the Robotics System Toolbox

The MATLAB client of genomix and the Robotics System Toolbox are two prominent
solutions to the integration of ROS features in MATLAB. Table 3.1 reports notable
aspects on which the two solutions differ. In particular, the HTTP interface of genomix
encapsulates data transferred from ROS to MATLAB into JSON objects. It has the benefit
of providing high genericity, while the Robotics System Toolbox needs a separate software
interface to load custom ROS data types in MATLAB. It however has the drawback
of requiring extra processing to parse each JSON object in a MATLAB structure, but
encoding and decoding are optimized to induce minimal overhead.

ROS support from the Robotics System Toolbox ROS and GenoM3 support from matlab-genomix
with genomix and rosix

Proprietary and closed-source, developed by The
MathWorksTM.

Free and open-source, developed by CNRS .

For MATLAB ≥ R2015a. For any MATLAB version.
Can publish data on ROS topics. MATLAB is
considered to be a component of the software ar-
chitecture.

Cannot publish data directly because MATLAB
is seen as a supervisor. This limitation can be
circumvented by requesting a component of the
architecture to publish data through a service call.

Message types must be known a priori, custom
messages are only possible through a separate in-
terface.

JSON objects allow to de-serialize data structures
in a highly generic way, without prior knowledge
of their definition.

Strong data typing enables faster data transfer. Data marshalling requires extra processing.
Solution for ROS middleware only. Middleware-independent solution with GenoM3

components, fully interfaced with ROS using the
rosix server.

Table 3.1: Summary of differences between matlab-genomix and the Robotics System Toolbox for
ROS support in MATLAB.

11 cf. https://git.openrobots.org/projects/matlab-genomix/gollum/demo.
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3.3 Installation and license of the deployment software

3.3.1 Installation

The installation of the tools underlying the robotic software architecture is simple. The pro-
cess is detailed in the Two!Ears documentation (docs.twoears.eu).

• ROS is installed following the standard procedure12 on GNU/Linux Ubuntu.

• GenoM3 , genomix , rosix and matlab-genomix , are installed through the open-source
compilation framework and packaging system robotpkg13.

• GenoM3 components developed for Two!Ears are compiled from source (using the
Autotools).

3.3.2 License

Most robotic software are released under permissive14, BSD-like licenses. ROS core
packages for instance use the BSD 3-Clause License. Unless otherwise stated, software
from WP5 uses the BSD 2-Clause License15.

Selecting a permissive license allows any other software piece to integrate or link to software
from Work Package WP5 with minimum requirements. Other Work Packages can select
a copyleft16 license without any legal issue, as Work Package WP5 will not link to this
software.

12 cf. http://wiki.ros.org/indigo/Installation/Ubuntu.
13 http://robotpkg.openrobots.org/.
14 A permissive license allows software to be redistributed with restricted access to the possibly modified

code.
15 The license template is available at http://opensource.org/licenses/BSD-2-Clause.
16 A copyleft license requires that redistributed software remains free and open-source, and any modification

or extension made to the software preserves the original rights.
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4 The Two!Ears deployment hardware and
low-level software

This chapter surveys the design and implementation of physical test beds suited to
the goals of Two!Ears. Audio acquisition from a KEMAR 45BB-2 Head-And-Torso
Simulator (HATS) is first exposed (Section 4.1). Then, a controllable azimuth degrees-of-
freedom (dof) and a stereoscopic sensor matched to the HATS are depicted (Sections 4.2–
4.3). Further information is given on the mobile platforms supporting the HATSs of
CNRS and UPMC (Section 4.4). Each hardware is described together with the companion
low-level software (libraries, ROS nodes) necessary to its exploitation. Finally, off-the-shelf
ROS stacks for Simultaneous Localization and Mapping (SLAM) and navigation are
outlined (Section 4.5).

4.1 Audio acquisition from a binaural sensor

4.1.1 Hardware: the KEMAR Head-And-Torso Simulator

The anthropomorphic HATSs used for the project are KEMAR Type 45BB-2 models,
fitted with “Large” European-like ears1. One G.R.A.S Type 26CS microphone2 is placed
inside each ear (Figure 4.1). Associated to it is the amplifier, which ensures its supply from
an external current source, and drives the audio signal to a Microdot output connector.
Table 4.1 summarizes the specifications.

Downstream the microphones, Integrated Electronics Piezo Electric (IEPE) M28 Supply
Modules3 ensure the following functions:

• generation of a 4 mA constant current for the microphone supply;

• injection of the current into the cable and combination with the sound signal;

• extraction of the sound signal coming from the microphone out of the bias current;

• amplification, with a defined gain, and band-pass filtering of the audio signal.

1 See http://www.gras.dk/45bb-2.html and http://www.gras.dk/media/docs/files/items/m/a/
man_45BB_45BC.pdf.

2 http://www.gras.dk/26cs.html.
3 http://www.mmf.de/manual/m28mane.pdf.
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Figure 4.1: G.R.A.S Type 26CS Microphone Figure 4.2: IEPE Supply Module M28

Specification Value Unit
Frequency Range 2.5 to 200 k Hz

Slew Rate 20 V/µs
Input Impedance 20 // 0.4 GΩ // pF
Output Impedance <50 Ω

Output Voltage Swing, min @ 24-28 V CPP voltage supply 8 Vp
Noise (A-Weighted) max 2.5 µV

Noise (A-Weighted) typical 1.5 µV
Noise (Linear 20Hz - 20kHz) max 6 µV

Noise (Linear 20Hz - 20kHz) typical 3.5 µV
Gain -0.45 dB

Power Supply (Constant Current Power) 2 to 20 (typ. 4) mA
DC bias voltage typical 12 V

Weight 3.0 g

Table 4.1: Specifications of G.R.A.S Type 26CS microphones

These IEPE devices comply with the IEEE 1451.1 standard for the output of piezoelectric
transducers or microphones. Their outputs are fed to the used audio interface, namely,
a RME Babyface, which can be accessed through ALSA4 under GNU/Linux5. A soft-
ware component named BASS , presented below, streams the acquired data to the ROS
architecture.

4.1.2 Software: the Binaural Audio Stream Server

The Binaural Audio Stream Server (BASS) is a GenoM3 component6 in charge of acquiring
binaural audio data from any ALSA-compliant hardware sound device, and of making it
available to other components of the software architecture.

4 The Advanced Linux Sound Architecture (ALSA) is a part of the Linux kernel, providing drivers for
audio devices, cf. http://www.alsa-project.org.

5 The RME Babyface has a Class Compliant mode for compatibility with standard USB audio devices,
cf. http://www.rme-audio.de/download/cc_mode_babyface_e.pdf.

6 Available at https://github.com/TWOEARS/audio-stream-server.
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4.1 Audio acquisition from a binaural sensor

BASS offers services to parameterize/start/stop the acquisition, and streams the captured
data to an output port. In its capturing state, the sound device periodically delivers
chunks of new data to the BASS component. Their size, commonly given in amount of
frames7, is set before starting the acquisition. BASS then pushes every new chunk to its
output port, so that a sliding window of the most recent data is published. For instance,
the port can be configured as a FIFO8-like buffer which contains the last two seconds of
acquired signals.

BASS provides the following services.

• ListDevices lists ALSA sound cards available for acquisition. If the computer has
multiple plugged sound cards, this allows to identify the card to use.

• Acquire starts the acquisition. It expects a few parameters which are: the identity
of the sound device (retrieved with ListDevices); the sample rate; the size of chunks
delivered by the sound device; and the size of the FIFO for the output port. The
acquired samples are streamed on the output port, named Audio.

• Stop interrupts a running acquisition.

The example below shows how to get the audio stream from BASS in MATLAB, using
the matlab-genomix bridge (section 3.2).
% Connect to genomix and load BASS
>> client = genomix . client ('host - machine :8080 ');
>> bass = client .load('bass ');

% Start the acquisition ( values are just examples )
>> babyfaceID = 'hw:1,0'; sampleRate = 44100;

chunkSize = 2048; portSize = 10;
>> r = bass. Acquire ('-a', babyfaceID , sampleRate ,

chunkSize , portSize );

% Check that starting acquisition was successful
>> if strcmp (r.status , 'error ')

error(' Starting acquisition failed ');
end

% Get audio data in MATLAB
>> p = bass.Audio ();
>> p.Audio
ans =

sampleRate : 44100
nChunksOnPort : 10

nFramesPerChunk : 2048

7 Here, a frame is defined as a pair of left and right samples at a common sampling time.
8 First In, First Out (FIFO).
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lastFrameIndex : 6341580
left: {1 x20480 cell}

right: {1 x20480 cell}
stamp: [1x1 struct ]

% Stop the acquisition
>> bass.Stop ();

For the needs of the Two!Ears Summer School which took place in September 2015, BASS
was deployed on a low-cost integrated binaural sensor. This sensor was made up with a
polystyren spherical head, a pair of STMicroelectronics MP34DT01 MEMS microphones9

housed in custom 1/2-inch cylinders with suitable electronics, a Logi PI FPGA board10

in charge of decoding the raw digital signals, together with a Raspberry PI2 11 computer
running GNU/Linux, ROS , GenoM3 and BASS . After ensuring that audio data could
be streamed from an ALSA device connected to the Raspberry PI2 , the genuine BASS
was then interfaced with the Logi PI board. Details of this implementation were given in
Deliverable D5.2@m24.

4.2 A KEMAR Head-And-Torso Simulator with a controllable
azimuth degrees-of-freedom

Task 5.1 of Two!Ears had initially planned to mount an anthropomorphic binaural head
on a pan-tilt unit. Soon after the beginning of the project, the consortium decided to
start from a complete KEMAR HATS and to endow its neck with a pan dof. The tilt dof
was dismissed as it does not contribute enough to active motion. The characteristics of
the hardware design and software libraries enabling the azimuth motion are hereafter
described.

4.2.1 Hardware: devices for a controllable azimuthal degree-of-freedom

By default, the head of the KEMAR HATS is not rigidly linked to the torso, and can
be moved manually in azimuth, with the possibility to lock it at some specified angles
(Figure 4.3). The dark element of the assembly, endowed with an angle indicator, goes
inside the torso. It constitutes the neck, as it remains visible between the torso and the
head. The light grey item is rigidly attached to the head. The basic idea was to replace
these two parts by an aluminium device designed on the basis of the CAD model of the
KEMAR HATS (Figure 4.4). This device is screwed on the genuine mounting holes of the
KEMAR torso, in exactly the same way as the original assembly mechanism (Figure 4.3).

9 http://www.st.com/web/en/resource/technical/document/datasheet/DM00039779.pdf
10 http://valentfx.com/logi-pi/
11 https://www.raspberrypi.org
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4.2 A KEMAR Head-And-Torso Simulator with a controllable azimuth degrees-of-freedom

Figure 4.3: From left to right: assembly mechanism of the KEMAR HATS; angle indicator; neck,
with locks at 0deg, 45deg, −45deg.

So, the integrity of the KEMAR HATS is ensured. Importantly, the device is endowed
with holes so that the cables connected to the two microphones can transmit the binaural
data to the audio interface through the lower part of the torso.

The servocontrol of the head is ensured by a set including a motor, its gearhead, an encoder,
and an electronic controller. A brushless DC motor was selected, as it constitutes a good
compromise in termes of compactness, simplicity, audible noise, and maintenance. Its
coupling with a planetary gearhead enables a sufficient output torque at startup. A relative
quadrature encoder was integrated at the output of its shaft to measure the azimuth of
the head with a resolution of 73728 pulses per turn.

An Harmonica Controller from ELMO completes this set. This “Compact and Smart
Digital Servo Drive” integrates all the processing and power switching elements necessary
to drive the motor in the considered embedded context. Several feedback control options
are provided, such as position or velocity setpoints, etc. Communication with the outside
world is ensured through the standard CAN bus protocol.

In the first design, head rotation limits were detected by two magnetic Hall effect sensors
mounted on the static part of the mechanism and connected to the Harmonica motor
controller. A magnet stuck on the rotating part triggered a response when it induced a
strong enough magnetic field, i.e., when it approximately faced one sensor. To improve
repeatability, during Year 3, this solution was traded for photoelectric proximity sensors
placed in the static part, and for a reflective element sticked under the moving part (Fig-
ure 4.4-left). Each sensor emits a focalized light beam. On the basis of the sensed return
paths, custom logical functions implement the detection of left and right end-of-course
positions. This new design is implemented on a PCB. It leads to a higher accuracy and re-
peatability, and increases the admissible range of the head azimuths from [−80deg; +80deg]
to [−90deg; +90deg]. Note that negative logic is used, so that if a sensor gets disconnected,
head movements are immediately stopped to prevent any damage.

The whole set (Harmonica Controller, IEPE modules, PCB, . . . ) has been rewired and
safely housed into the KEMAR HATS. The two DIN rails holding these elements are fixed
on the lower plate (Figure 4.4). So, users have a limited access to the components and do
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not need to disconnect or reconnect cables anymore when the HATS must be moved. On
its rear, four connectors are now available:

• A DB-9 connector to a standard CAN bus protocol for communication and commands;

• Two BNC plugs for microphones;

• One LEMO plug for 24V-DC input power; this voltage is available on the Jido and
Odi platforms from CNRS and UPMC , and can be easily provided by an external
power supply for a standalone usage of the motorized HATS.

Detailed assembly instructions for the mechanical and electrical designs are available in
the appendix (Section 7.2).

Figure 4.4: Top: CAD design (left) and implementation (right) of the KEMAR motorization
system. Bottom-left: Aluminium parts to be fixed under the head and inside the torso. Bottom-
middle and Bottom-right: packaging of the full system with IEPE modules (blue), Harmonica
controller (grey), photoelectric sensors logic PCB (green) and coaxial microphones cables (red).
Note the new HATS rear connectors, from left to right: one DB-9 connector for CAN bus protocol,
two BNC plugs for microphones, one LEMO power supply connector.
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4.2.2 Sofware: low-level libraries and GenoM3 component

Three different custom, open-source low-level libraries12 have been developed for the
motorization of the KEMAR head.

• Socketcan provides an interface with the GNU/Linux socket CAN layer. Its main
goals are to initialize or end the communication with the CAN bus controller, and
to send or receive messages.

• On the top of it, Harmonica provides an interface with the ELMO Harmonica Motor
Controller which drives the motor. It includes functions to initialize and stop this
controller, as well as to set and get the motor position through it.

• On the top of them, Kemar provides an interface specific to the KEMAR HATS itself.
It includes functions for head homing, position control or velocity control. These
entail the aforementioned limit sensors.

The Kemar library is encapsulated into the kemar GenoM3/ROS module13 of the Two!Ears
deployment system so as to enable its concurrent execution with other tasks. It was initially
designed during Year 1, and updates were brought all along the project, especially after
the hardware upgrade. The component provides an output port filled with the current
state of the motor, i.e., its current position and velocity, and the following services are
offered.

• Homing must be called at least once prior to other services. It first turns the head
towards left, then right, until it reaches the limit sensors. This calibrates its position
encoder and deduce the maximum left and right admissible rotations. Then, the
head is set to the middle position, defined as the origin (0 deg) for position control.

• SetVelocity sets the reference velocity (in deg.s−1) during the position control of
the head (services MoveAbsolutePosition or MoveRelativePosition listed below).
The default value, defined after homing, is 100 deg.s−1.

• MoveAbsolutePosition is a service for position contol. It drives the head to a
setpoint defined with respect to the origin.

• MoveRelativePosition is similar to MoveAbsolutePosition, except that it moves
the head relatively to its current position.

• ControlInSpeed is a service that moves the head at a given constant velocity
(in deg.s−1) until it is called again (e.g., at 0 deg.s−1 to stop the head) or until the
left or right limit value is reached. This velocity is independent from the reference
velocity used during position control.

The example below shows a simple position control from MATLAB, using the matlab-

12 Available at https://git.openrobots.org/projects/elmo-axis-libs.
13 Available at https://github.com/TWOEARS/kemar-control.
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genomix bridge (section 3.2).

% Connect to genomix and load the kemar component
>> client = genomix . client ('host - machine :8080 ');
>> kemar = client .load('kemar ');

% Execute the homing procedure
>> kemar. Homing ();

% Set the reference velocity for position control to 50 deg/s
>> kemar. SetVelocity (50);

% Move the head to 45 deg with a blocking call
>> kemar. MoveAbsolutePosition (45);
% The prompt returns once the head has reached the position

4.3 Incorporation of stereovision on the KEMAR HATS

This section describes the final implementation of a human-like stereoscopic system suited
to any KEMAR Type 45BB-2 HATS. This non-intrusive sensor consists in micro-cameras
mounted on 3D-printed glasses (Figure 4.5). Visual functions suited to this design were
implemented, for human detection and tracking as well as object detection and localization
(Sections 6.2–6.3).

Figure 4.5: Custom 3D-printed glasses: (left) with two types of lenses; (right) mounting on the
KEMAR HATS.
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4.3.1 Hardware: lenses, sensors and 3D-printed glasses

On the basis of the KEMAR CAD model, CNRS designed a pair of glasses which steadily
fits at the level of the eyes. On its 10 cm-baseline (enlarged w.r.t. the KEMAR eyes for
improved stereovision performance) it incorporates a pair of IDS UI-3241LE-C-HQ µeye
micro-cameras14 as well as their wires and connectors. These are endowed with a 1/1.8′′
CMOS sensor featuring a 1280× 1024 matrix of 5.3µm pixels using a global shutter, and
USB 3.0 interface. Their size and weight are 36.0×36.3×20.2mm and 12 g.

A comprehensive Application Programming Interface (API) is provided by IDS15, to
configure the devices and retrieve images. For accurate stereoscopic reconstruction, the
left and right images are synchronized. One camera, considered as the master, generates
the hardware trigger signal for the slave one.

To obtain high 3D accuracy after triangulation when tracking humans, Lensagon B16020S12
and Lensagon BSM12016S12 lenses were first mounted on the glasses. Their respective
weights are 4.2 g and 6 g. Their 16mm and 12mm focal length led to a high angular
precision though at the expense of a reduced field of view (22 deg or 31 deg, respectively).
3D localization accuracy results were satisfying. Methods for object detection and segmen-
tation based on dense RGB-D point clouds also worked well using depth maps generated
by stereovision. However, due to the restricted stereovision field of view, a rotation of
the head had to be performed in order to scan the scene and determine areas of interest.
Consequently, Lensagon BM5518S12ND were installed. Their 5.5mm focal length leads
to a wider field of view (64.5 deg), but implies a heavier weight (17 g). In addition, the
angular resolution drops, and so does the 3D accuracy.

4.3.2 Software: acquisition, calibration, rectification and triangulation

Acquisition

The ROS open-source ueye_cam16 package performs image acquisition using functions
from the aforementioned API. The output are two ROS topics with images from both
cameras, synchronized and equally timestamped.

Calibration

Monocular calibration is the process of estimating the intrinsic parameters (focal length,
image parameters and principal point) as well as the extrinsic parameters (translation
and rotation turning the 3D world coordinates to 3D camera coordinates), see Figure 4.6.

14 https://en.ids-imaging.com/store/ui-3241le.html
15 https://en.ids-imaging.com/manuals/uEye_SDK/EN/uEye_Manual/index.html?c_programmierung.

html
16 http://wiki.ros.org/ueye_cam
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Figure 4.6: Representation of intrinsic and extrinsic parameters (from http://mathworks.com/
help/vision/ug/camera-calibration.html).

This is performed by the camera_calibration ROS package17, which supports monocular
and stereoscopic calibration. Stereoscopic calibration involves the determination of the
two sets of camera parameters plus the relative translation between the two camera frames.
The underlying algorithm comes from the OpenCV library18, on the basis of the so-called
Plumb Bob model (pinhole + optical radial and tangential distortions) which projects
the 3D scene onto the image plane using perspective transformation19. The intrinsic and
extrinsic parameters are obtained by moving a calibration pattern (with easy-to-extract
feature points, e.g., a chessboard) to various positions and orientations in front of the
cameras.

Rectification

The stereo_image_proc ROS package performs stereoscopic image rectification20. The
raw images are projected on a common plane in such a way that each pair of epipolar
lines, i.e., each pair of intersections of the image planes with the plane passing through
the optical centers and a 3D point, lies on a single row, see Figure 4.7. These rectified
images are used for the evaluation of the stereoscopic system in Section 4.3.3, for human
detection (Section 6.2) as well as object detection (Section 6.3).

Besides this, a disparity map which encodes the difference in horizontal coordinates of corre-
sponding image points and a 3D point cloud are obtained and published (Figure 4.8).

Triangulation

Triangulation is the process enabling the recovery of the world coordinates of a 3D point
from the 2D image coordinates of its projections on left and right images. This is a common
problem of computer vision (Daniilidis and Eklundh, 2008).

17 http://wiki.ros.org/camera_calibration
18 http://opencv.org/
19 http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
20 http://wiki.ros.org/stereo_image_proc – http://wiki.ros.org/image_pipeline/CameraInfo
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4.3 Incorporation of stereovision on the KEMAR HATS

Figure 4.7: Pair of raw images (left) and pair of rectified images (right) with two epipolar lines,
from http://wiki.ros.org/stereo_image_proc.

Figure 4.8: Disparity map, from
http://wiki.ros.org/stereo_image_proc.

Figure 4.9: Automatic corner extraction in a
chessboard-like calibration pattern.

4.3.3 Evaluation of the stereoscopic system

The accuracy of the stereoscopic system was evaluated. A chessboard-like calibration
pattern was positioned fronto-parallel with the image plane of the camera at five distances
(1m, 2m, 3m, 4m, 5m) corresponding to the useful range. The projections of the corners of
the squares were extracted and stereo matched in the left and right images. The 3D posi-
tions of these corners were then estimated through the stereoscopic reconstruction process.
For each of the five distances, a plane was fitted over these 3D points. This plane was
then used as a reference against which the distribution of the computed depths is assessed.
Figures 4.10 and 4.11 show the results for the reference distances 1m and 5m, respectively.

The curves plotted in Figure 4.12 represent the means of the estimates of the distances
between the 3D points and their projection, as a function of the genuine distances. The red
one, obtained after doing the calibration with a 21.0× 29.7 cm chessboard, with 29mm
side squares, shows that the obtained model is suited for ranges below 2.5m. Estimated
distances were much less accurate beyond that limit because corners could be hardly
extracted.

To get an accurate model, the points extracted from the calibration pattern during the
calibration should be at distances where the system is expected to perform. Therefore,
distances around 5m should be taken into account, which was not the case for the red
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Figure 4.10: Error along the Z direction
relatively to the fitted plane vs index of
the corners extracted on the calibration pat-
tern, for the distance 1m. Total vertical
range: [−0.005m; +0.004m]; step between tick
marks: 0.001m.

Figure 4.11: Error along the Z direction
relatively to the fitted plane vs index of
the corners extracted on the calibration pat-
tern, for the distance 5m. Total vertical
range: [−0.03m; +0.03m]); step between tick
marks: 0.01m.

curve in Figure 4.12. The calibration algorithm included in the camera_calibration ROS
package allows the use of multiple calibration patterns. Therefore, for a successful corner
extraction, an additional 95× 105 cm chessboard, with 108mm sided squares, was used
at large distances (Figure 4.9). The red curve of Figure 4.12 clearly diverges from the
ground truth dotted case for depths above 3m, while the blue one stays quite close to
the ground truth. The maximum distance between the fitted plane and the triangulated
3D point that is located farthest from it is plotted in Figure 4.13. At the distance of
5m, the maximum reported error is 2.5 cm using the two-pattern calibrations, and this
measurement is coherent with the predicted acurracy of the stereovision system. For the
same ground truth distance of 5m, the computed depth using the single-pattern calibration
is 4.1m, and the distance between the fitted plane and the farthest point is 4.6 cm. These
results confirm the relevance of using two different sizes of calibration patterns to achieve
accurate 3D reconstruction.

Figure 4.12: Means of the depth estimates
computed by stereoscopic reconstruction vs
genuine depth, for: (red) one-pattern cali-
bration; (blue) two-pattern calibration. To-
tal horizontal range: [1m; 5m]; total vertical
range: [1m; 5m]; step between tick marks: 0.5m.

Figure 4.13: Maximum error along
the Z-axis for: (red) one-pattern calibra-
tion; (blue) two-pattern calibration. To-
tal horizontal range: [1m; 5m]; total verti-
cal range: [0m; 0.06m]); step between tick
marks: 0.01m.
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4.4 The mobile platforms Jido (@CNRS) and Odi (@ISIR)

4.4.1 Robot at CNRS: Jido

A Hardware

At CNRS , Jido is based on a Neobotix MP-L655 mobile platform21. Its is robust, silent,
and its payload is about 60 kg. It has been partially re-wired, its power system (distribution
board, converters,. . . ) has been updated, its caster wheels have been replaced. An Intel®
CoreTM i7 CPU E610 @2.53GHz / 4GBRAM fanless computer has been inserted. USB 2.0
ports, together with power lines delivering 5V, 12V and 24V voltages, are available to extend
its hardware. A mechanical adaptater has been designed and installed to carry the KEMAR
HATS. One Control Area Network (CAN) bus interface is dedicated to locomotion, and
another one connects the motorization system of the KEMAR HATS. The driving motors
and their relative encoders are connected to Harmonica controllers22 similar to the one
used for the motor of the neck of the HATS. The maximum translation and rotation
velocities are 0.8m.s−1 and 1 rad.s−1. The embedded sensors consist of a fairly accurate
odometry (due to reduced slipping and high encoders resolution), and two SICK LMS200
laser range finders on the front and back sides of the robot.

B Software: ROS stack for Jido locomotion

Jido’s base computer runs ROS indigo on GNU/Linux Ubuntu 14.04 LTS. A custom ROS
stack named jido_ros was developed for low-level perception and control. It features the

21 http://www.rcs.hu/roboshop/Neobotix/MP-L655_A.htm
22 http://www.elmomc.com/products/harmonica-main.htm

Figure 4.14: Jido @CNRS Figure 4.15: Odi @UPMC
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following packages, which also comply with the standard interface of the ROS navigation
stack, so that the platform can be controlled in a highly generic way.

• jido_description includes an XML representation of the robot’s model in the Unified
Robot Description Format (URDF).

• jloco provides a node to drive the wheels. It reads velocity commands from a ROS
topic, and publishes the robot odometry on another one.

• The main package jido_base provides files which can quickly bring the base into
operation, by launching nodes provided by other packages either from jido_ros
or standard off-the-shelf ROS stacks. These nodes load the drivers for the laser
rangefinders.

• jido_teleop provides a node that receives inputs from a joystick and turns them into
velocity commands. It publishes the commands on the topic subscribed by the jloco
node, letting the joystick control the motion of the base.

• jido_2dnav handles navigation by instanciating ROS nodes from the ROS navigation
stack (described in Section 4.5) for localisation, path-planning and obstacle avoidance.
This package also sets navigation parameters that fit the characteristics of the Jido
platform and its environment.

4.4.2 Robot at ISIR: Odi

A Hardware

UPMC purchased (on its own funds) the mobile robot Odi, specifically designed for
Two!Ears by Enova ROBOTICS23. Odi was delivered on January 2016. Its max-
imum payload is 20 kg. Odi embeds an Intel® CoreTM i5-4300U CPU @1.9GHz /
8GBDDR3RAM computer, and CAN bus interfaces. Its maximum translation and
rotational velocity are about 1m.s−1 and 0.5 rad.s−1. In addition to proprioceptive infor-
mation provided by wheels encoders, Odi is endowed with a Light Detection And Ranging
(LIDAR) sensor enabling range estimation up to 5m with about 1 % accuracy. Ethernet
and USB 3.0 ports, together with embedded power lines delivering 5V, 12V and 24V
voltages, are available to extend the robot hardware. Since September 2016, Odi carries
the KEMAR HATS of UPMC equipped with the neck motorization system designed and
manufactured at CNRS . A detailed user manuel of the system is available in the Appendix
section. It provides all the information needed to proceed with a fresh Odi installation,
from scratch, for both the hardware and software aspects.

23 https://www.enovarobotics.eu/.
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B Software: ROS stack for Odi locomotion

Odi also runs ROS indigo on GNU/Linux Ubuntu 14.04 LTS. A specific ROS locomotion
stack has been developed, which features the following packages.

• kemar_robot includes everything needed to handle motor commands and laser
startup.

• roboteq_driver is the actual driver used by ROS to control the two motors of Odi.

• odometry_listener is in charge of Odi odometry.

• kemar_teleop allows to teleoperate the platform through a keyboard or joystick.

• kemar_navigation is in charge of Odi navigation, and includes everything needed to
perform environment mapping and/or navigation inside (this includes the geometric
parameters of the robot itself, i.e. wheel spacing and diameters, etc.).

These packages comply with the standard interface of the ROS navigation stack, so that
all the developments on Jido can be easily ported to Odi without any change in the
code.

4.4.3 Condition for an omnidirectional head

Jido and Odi are non-holonomic differential wheeled bases. The nonholonomic constraint
imposes that they can only move tangentially to their trajectory, i.e., any instantaneous
motion pointing towards the axis of their wheels is not allowed. In other words, the
degrees of freedom of each of them are the tangent linear velocity vector vbase and the
angular velocity ωbase around the vertical axis. As a first approximation, the broadside
direction of the KEMAR head is supported by vbase, and the rotation axis of the KEMAR
neck is vertical, belongs to the midperpendicular plane of the wheels, and situated at
a distance D ahead from the midpoint of the wheels. Its angular position and velocity
with respect to the rigidly linked torso and robot basis are respectively denoted by q
and ωhead.

As explained in Deliverable D5.2@m24, as soon as D 6= 0, it is possible to set the velocities
of the KEMAR head to any 3-tuple vy, vz, ωx, with vz,vy its linear velocities along the
broadside (front) and interaural (left) directions and ωx its angular velocity around
the vertical axis. The three corresponding control inputs vbase, ωbase, ωhead are recalled
below (Cadenat, 1999):vbase

ωbase
ωhead

 =

− sin q D cos q 0
cos q D sin q 0

0 −1 −1


−1 vy

vz

ωx

 . (4.1)

In practice, these equations hold up to the limiting values of vbase, ωbase, ωhead.
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4.5 Off-the-shelf ROS stacks for SLAM and navigation

The ROS low-level components specific to each robot (locomotion, sensor handling)
have a standard interface. So, on the top of them, platform-independent components
can be used, what enables reproducible research. These can consist in specifically de-
veloped GenoM3/ROS modules, or in off-the-shelf solutions such as publicly available
ROS stacks. Within this last category, some stable and widespread packages available
under open-source license have been selected for map building and autonomous naviga-
tion.

To move around safely and autonomously, a robot must be able to localize itself in the
two-dimensional (2D) environment and navigate between any set of location coordinates
(x, y, θ). This implies the planning of a reference path in free space complying with
its kinematic contraints, as well as the reflexive execution of this path while avoiding
unexpected or moving obstacles (people, etc.). The off-the-shelf celebrated ROS navigation
stack24 has been used so far, which gathers some popular achievements. It relies on
a map, to be built beforehand by an algorithm called Simultaneous Localization and
Mapping (SLAM). Besides, the important frames of the robot (base frame, position and
attitude of all the exteroceptive sensors with respect to this frame,. . . ) must be described
in the Unified Robot Description Format (URDF)25. They are published by the ROS
node robot_state_publisher26 as a tree in the ROS package tf , in charge of maintaining a
tree of frames over time and compute changes of coordinates.

Figure 4.16 shows a typical set of components concurrently running on Jido and Odi during
an elementary navigation task. Platform-specific and platform-independent components
can be easily distinguished.

WP5 TWO!EARS INTERNAL REVIEW - BERLIN - 2016/02/09-10

SOFTWARE AND ARCHITECTURE

ROS/GenoM3 components - matlab-genomix bridge - etc.
‣ Jido+Frank: locomotion & head control, laser-based (SLAM and) localization, 

motion planning, reactive trajectory execution, binaural audio streaming (BASS), 
visual streaming, short-term & audio-motor localization, sensorimotor feedback
‣ ISIR: locomotion, laser-based (SLAM and) localization, navigation, video (from 

webcam), BASS (tests with AFE),…
‣ The two robots can be addressed in exactly the same way  

                                                                   (up to the controllability of the head).

9

ISIR

LAAS

Figure 4.16: Interacting components in sample experiments with Jido or Odi. ROS nodes and
topics are respectively represented by ellipses and boxes. Bigger boxes that surround nodes and
topics are namespaces that gather closely related resources. Parts surrounded in green, from the
ROS navigation stack (see Section 4.5.2), are platform-independent.

24 http://wiki.ros.org/navigation
25 http://wiki.ros.org/urdf
26 http://wiki.ros.org/robot_state_publisher
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4.5 Off-the-shelf ROS stacks for SLAM and navigation

4.5.1 Map building

A popular SLAM algorithm for map building is implemented in the off-the-shelf gmapping27

ROS package, included in a dedicated ROS stack. It is a ROS wrapper for OpenSlam
Gmapping28. It features a Rao-Blackwellized particle filter assimilating laser and odometer
measurements and combining them with the movement of the robot (Grisetti et al., 2007).
The robot must be driven throughout the environment, e.g., manually by using the joystick.
The map in progress can be viewed in real time on the 3D visualization tool rviz29. Once
the user deems the map satisfactory, he/she stores it in a file for further use in localization
and navigation components.

gmapping requires a fine tuning of some parameters (out of a total of 36), such as the
maximum range of the laser sensor, the dynamic noise of the prior motion model, the
number of beams to skip in each scan to reduce computation time, the number of particles
and the resolution of the map (meters per grid).

4.5.2 Navigation

The ROS navigation stack can be broken into three main packages.

• amcl performs odometry and laser based localization.

• map_server broadcasts map data on the ROS topic /map.

• move_base features a global planner to compute an admissible path between two
locations, and a real time, reflexive, execution of such a path which includes the
detection of unexpected obstacles as well as local motion strategies to avoid them.

The amcl30 ROS package (for Adaptive Monte Carlo Localization) considers a robot moving
in a 2D environment mapped with gmapping. It implements a stochastic estimation of
the pose of the robot into this map by means of a particle filter, on the basis of the time
record of odometer and laser measurements. Three categories of parameters are entailed
in the configuration of amcl:

• filter tuning (minimum and maximum allowed number of particles,. . . );

• laser model (minimum and maximum scan range,. . . );

• odometry model (differential vs omnidirectional, etc.)

Two 2D maps, named costmaps, maintain information about where the robot can navigate
in the form of an occupancy grid (each cell of which is associated with an occupancy

27 http://wiki.ros.org/gmapping
28 http://openslam.org/gmapping.html
29 http://wiki.ros.org/rviz
30 http://wiki.ros.org/amcl
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probability by an obstacle). One is meant for global planning, by creating long-range plans
over the entire environment. The other one is used for local motion and obstacle avoidance.
Therefore, four groups of parameters need to be configured.

• Common costmap parameters: thresholds on obstacle information (e.g. range) and
on the footprint of the robot; etc.

• Global costmap parameters: coordinate frame of the global costmap; reference frame
of the robot base; update frequency of the costmap; etc.

• Local costmap parameters: coordinate frame of the local costmap; reference frame of
the robot base; size (width and height in meters) and resolution (meters/cell) of the
costmap grid; etc.

• Motion parameters: admissible maximum velocity of the mobile base; tolerances to
reach the goal; etc. given a plan and a costmap.

move_base executes the following steps to safely navigate to a location depicted by a
(x, y, θ) coordinate tuple in the world frame. First, the robot is localized in the environment
map, executing if necessary a “recovery behavior” (360◦ rotation around its vertical axis).
Then, the global planner computes the admissible shortest path from the current location
to the goal. A trajectory controller ensures the execution of this path. It entails a real time
laser based obstacle detection algorithm, and brings local changes to the planned path if
necessary. In case of failure, the robot can even move backwards.

The rviz graphical visualization interface can also be used, to define a goal in an intuitive
way. Internally, it publishes such a tuple on a specific ROS topic from the ROS navigation
stack called move_base/goal. For the Two!Ears project, the goal situations of the robot
must be often defined at the MATLAB level. Therefore, a GenoM3 component, named
sendPosition, has been coded, which provides the user with the possibility to control the
robot either in absolute mode (i.e., with respect to the world frame) or in relative mode
(i.e., with respect to its current location).
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ROS architecture

The role of the Auditory Front-End (AFE) is to turn acquired auditory signals—provided
from the functional layer by the Binaural Audio Stream Server (BASS)—into higher
level features exploited by the decisional layer, see Deliverable D2.2@m12. Its original
implementation was carried out under MATLAB. However, it was not developed with real
time constraints in mind: no concurrency was available between processors, and guaranteed
computation time could hardly be satisfied when extracting a lot of features. As already
argued in Deliverable 5.2@m24, it has then been decided to implement a new AFE right
at the functional layer (cf. Section 3.1), supported by ROS .

This chapter precisely describes this ROS implementation. The GenoM3 framework has
been used, as it eases the specification, development and tests. The algorithmic core of
the implementation, consisting in a standalone library called openAFE , is first described
(Section 5.1). On this basis, a new ROS node, named rosAFE , has been implemented.
Its description is proposed in Section 5.2, highlighting concurrency aspects. Finally, the
way how each processor is actually instantiated by a supervisor is described in Section 5.3.
This supervisor has been written in MATLAB, thus allowing a smooth transition between
the MATLAB and ROS implementation of the AFE.

5.1 C/C++ implementation of the AFE algorithmic core: the
openAFE library

The migration from the genuine AFE to a ROS implementation requires the transcoding
of the algorithmic core from MATLAB to C++. The MATLAB AFE was written with
a strong object-oriented approach, and it would seem natural to start from this robust
MATLAB code to generate a corresponding C++ library. Automatic code generation using
the MATLAB Compiler SDK1 or the MATLAB Coder toolbox2 was considered, but led to
two significant issues: non-standard data types were introduced, dedicated to MATLAB;
linking to closed source shared MATLAB libraries was needed to produce the executable
code. The automatic C/C++ code generation from MATLAB was thus discarded. It has
been decided to recode a specific AFE in C++ from scratch, but keeping highly inspired
by the structure of the genuine MATLAB implementation.

1 https://www.mathworks.com/products/compiler.html.
2 https://www.mathworks.com/products/matlab-coder.html.
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5 Bringing the Auditory Front-End into the ROS architecture

5.1.1 Standard libraries and mathematical tools

openAFE takes benefit from existing external open source libraries to propose standard
and maintainable structures. These include:

• the C++ Standard Template Library (STL)3, implementing generic types such as
vectors, pairs, maps, smart pointers,etc.;

• the BOOST library4 for its circular buffer implementation, exploited by rosAFE to
represent audio signal buffers;

• the FFTW library5, which is actually used inside MATLAB, for Fast Fourier trans-
form computation.

In addition to these open source libraries, openAFE contains a class named mathTools
which assembles C/C++ implementations of some useful MATLAB functions, such as
convolution, linspace, conversion from frequency to ERB, etc. These are not docu-
mented here, since they are only used internally and are not meant to be used outside
openAFE .

Note that since the genuine MATLAB AFE implementation and the linked libraries are
released under the copyleft GNU General Public License, openAFE is also released with
the same license.

5.1.2 Signal representation

Input or output signals are described through standard C++ classes defining attributes
and methods for their parameterisation, creation and destruction. At first, a general
openAFE::Signal class is defined, highlighting common attributes and methods inherited
by the more specific signal classes described below. For instance, a signal instance is
represented by its name, its sampling frequency, the channel it represents (mono, left or
right channel) and its size.

All signal instances share the same signal buffer description, relying on the
Boost::CircularBuffer class provided by the BOOST library, see Figure 5.1. Like many
other circular buffer implementations, it has the following properties:

• the capacity of the circular buffer is fixed and does not change automatically when
pushing new data inside;

• even with a constant capacity, new data can be pushed as often as required into the
circular buffer; if the circular buffer is full, data are overwritten.

3 https://www.sgi.com/tech/stl/index.html
4 http://www.boost.org/
5 http://www.fftw.org/
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Using this kind of buffer makes sense when dealing with a continuous audio data flow to
avoid continuous data shift in memory. This is the case in the proposed implementation,
where audio data originate from BASS , which continuously publishes chunks to openAFE
(or any other client). A consequence of this circular architecture is that a single chunk of
audio data may not be always stored in a contiguous memory zone. However, one circular
buffer may be represented by two separate contiguous memory arrays (called array_one
and array_two in the BOOST library). A dedicated structure called twoCTypeBlock has
been designed to hide this implementation detail from the user, so that data inside a circular
buffer can be accessed by requiring either the whole buffer, or only the last appended
chunk, or only last appended N frames, or the whole new frames, through the respective
methods getWholeBufferAccesor(), getLastChunkAccessor(), getLastDataAccessor() and
getOldDataAccessor().

On this basis, three new dedicated signal classes are defined, both of them inheriting
from the general openAFE::Signal class described above (see the inheritance diagram on
Figure 5.2). These three signal classes directly reproduce the signal definitions in the
genuine MATLAB AFE, namely:

• openAFE::TimeDomainSignal, for one-dimensional (time) signals;

• openAFE::TimeFrequencySignal, which corresponds to two-dimensional signals, with
the first dimension related to time and the second to the frequency channel;

• openAFE::CorrelationSignal, for three-dimensional signals where the third dimension
is a lag position.

Figure 5.1: A circular buffer presentation from the BOOST Library.

39



5 Bringing the Auditory Front-End into the ROS architecture

Figure 5.2: Inheritance diagram for the openAFE::Signal class.

5.1.3 Processor representation

The purpose of the Auditory Front-End (AFE) is to extract auditory representations from
a stream of binaural audio data. In practice, each processor is responsible for one individual
step in the extraction of a given representation, to be later used by higher modeling or
decision stages. In the MATLAB AFE implementation, processors are connected to each
other and form a tree: a processor whose output is routed to another processor’s input
is henceforth called parent while the second one is called child. Of course, a processor
can have multiple children, and multiple parents as well. The openAFE organisation
of processors is still rooted in this tree architecture, an instance of which is shown in
Figure 5.3. Its current implementation is detailed below.

A Data exchange between processors

The tree workflow has been implemented through an object-oriented description, providing
general methods to access data from a parent processor, process it, and release it to its
child(ren). Basically, each processor instantiation contains a pointer to its parent(s), but
does not include any information about its child(ren). Therefore, the data flow between
two processors is handled by two general methods: processChunk() and releaseChunk().
processChunk() gets data from the parent processor and processes it. Once the representa-
tion is obtained, the result is stored in a private internal memory zone (attributes leftPMZ
and rightPMZ ), ready to be used by its child(ren). Then, releaseChunk() can be used to
search for the last available chunk of data in this private memory zone, and to append it
to the output signal of the processor. This saves children of a processor from making a
local copy of their parent’s output(s), as it shares a read access to its outputs(s). Avoiding
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Input-Processor

Pre-Processor

Filterbank (Gammatone)

Inner Hair Cell

RatemapILDCross Correlation

Figure 5.3: Tree of processors: each processor is represented as a box; boxes can be connected to
each other. In this sample tree, innerhaircell is the child of gammatone, and gammatone is then
the parent of innerhaircell. A processor can have multiple children (see the innerhaircell processor)
and multiple parents (not illustrated here).

replication by each child(ren) limits the memory needs. Figure 5.5 shows some source
code illustrating this mechanism.

B Description of processor classes

Multiple classes have been used to describe all processors. On the top of all representations
is the openAFE::Processor class, which describes the general common properties and
methods of all processors. This includes the aforementioned chunk processing methods
processChunk() and releaseChunk(), but also attributes like the name of the processor, its
sampling frequency, its input and output size, etc. Three classes inherit this description,
respectively dedicated to time-based, frequency-based and lag-based processors. This
is to put in parallel to the three signal classes openAFE::TimeDomainSignal (1D sig-
nals), openAFE::TimeFrequencySignal (2D signals) and openAFE::CorrelationSignal (3D
signals), see Section 5.1.2. Each of them gives rise to specific processor classes, which
actually implement the processor representations. For now, seven processor classes are
available:

• openAFE::InputProc describes the very first processor of a processor tree; it
receives audio from any classical C -type array and stores the data in two
openAFE::TimeDomainSignal instances, corresponding to the left and right channels;

• openAFE::PreProc implements preprocessing computations, like DC-bias removal,
pre-emphasis, RMS normalisation, level scaling to a pre-defined SPL reference, and
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middle ear filtering; each preprocessing step can be precisely tuned by adequate
parameters set through their corresponding methods;

• openAFE::GammatoneProc implements a bank of gammatone filters that simulates
the frequency selective properties of the human cochlea;

• openAFE::IHCProc implements Inner Hair Cell (IHC) functionality by extracting
the envelope of the output from individual gammatone filters;

• openAFE::CrossCorrelation implements a cross-correlation between the right and left
Inner Hair-Cell signal representations, in the Fourier domain; the result is normalized
by the auto-correlation sequence at lag zero, and evaluated on a given time range; it
comes as a three-dimensional openAFE::CorrelationSignal instance, where the three
dimensions respectively represent time frame, frequency channel and lag;

• openAFE::ILDProc implements the Interaural Level Difference estimation for indi-
vidual frequency channels by comparing the frame-based energy of the left and the
right-ear IHC representations;

• openAFE::RateMap implements the computation of a rate-map, i.e., a map of
auditory nerve firing rates; the rate-map is computed for individual frequency
channels by smoothing the IHC signal representation with a leaky integrator.

Importantly, all the parameters of these processors, which appear as attributes of their
corresponding classes, are identical to those of the genuine MATLAB processor implemen-
tation. Consequently, they are not listed again in this document. The reader is invited to
refer to the official Two!Ears documentation. Usually a parameter is a boolean, which
refers to a flag (for instance, turn on or off the DC-Removal filter for an instance of the
openAFE::PreProc class), a value (e.g. DC-Removal cut off frequency), or a special parame-
ter of the processor (for instance, windowing type for an instance of the openAFE::ILDProc
class). A change in a processor parameter may require some preparation before its effective
use in the processing: for instance, changing the cut-off-frequency of a filter yields to the
re-initialisation of this filter. This preparation must be explicitly called after a change of
parameter through the corresponding prepareForProcessing() method, which is described
in the general openAFE::Processor class, and thus inherited by all processor objects. Note
that each parameter is coupled with corresponding set() and get() methods, which allow
to respectively set or read the parameter value of the instantiated processor. Except the
blacklisted parameters listed in the original AFE, all the parameters can be changed at any
time, thus allowing top-down feedback from higher levels of the Two!Ears architecture.
The new parameters are immediately used for the new chunks arriving just after the
modification. To conclude, the inheritance diagram for the openAFE::Processor class is
shown in Figure 5.4. It lists, when possible, all the attributes and methods of all classes
listed above.
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Figure 5.4: Inheritance diagram for the openAFE::Processor class. Classes in blue can be
instantiated.

43



5 Bringing the Auditory Front-End into the ROS architecture

5.1.4 Some implementation considerations

A The processorVector class

In addition to the classes dedicated to the implementation of processor algorithms, a class
openAFE::processorVector is introduced to handle multiple instances of a same processor.
Indeed, the front-end must be able to cope with multiple realisations of the same processor,
possibly tuned with different parameters. openAFE::processorVector is in charge of storing
and managing these instantiations, by providing adequate methods to add, remove, compare
and search for multiple instances of a processor. In practice, openAFE::processorVector
stores only a list of smart pointers to each processor instantiation. As a result, and
according to the proposed implementation, a processor object is destroyed as soon as it is
removed from the corresponding list.

B Parallel computation

The proposed implementation highly relies on multi-threading capabilities, which is offered
almost wherever possible. As soon as multiple channels are independently processed in
one processor, the implementation automatically creates one thread per channel. For
instance, a gammatone processor instantiation of 31 left and right channels creates two
threads for the two binaural channels, each of them generating 31 other threads for each
filter processing task. Of course, none of these threads give rise to a concurrency problem.
However, some processors in charge of light computations are single-threaded, since no
gain has been observed in comparison to a multi-threaded implementation. This is the
case of the ILD and Ratemap processors.

C Code example

As already stated, the openAFE library is only in charge of providing the algorithmic
core of the ROS implementation of the AFE. Nevertheless, it can be easily used in an
independent C/C++ linked program. One has to keep in mind that the tree of processors
required to compute a given audio representation is not automatically created on request.
The processors involved in the computation of the desired representation must be explicitly
called successively in the source code. This is illustrated in Figure 5.5, where a cross-
correlation computation is requested. Then, the Input processor, the Pre-Processor, the
Gammatone processor, and the Inner Hair Cell processor must be first explicitly used to
compute intermediate audio representations. Figure 5.5 also highlights the processChunk()
and releaseChunk() mechanism described in Section 5.1.3-A.
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/∗ Input p r o c e s s o r i n s t a n t i a t i o n ∗/
shared_ptr <InputProc > inputP ;
inputP . r e s e t ( new InputProc ( " input " , fsHz , 10 /∗ b u f f e r S i z e _ s ∗/ ,

f a l s e /∗ doNormalize ∗/ ) ) ;

/∗ Pre p r o c e s s o r i n s t a n t i a t i o n ∗/
shared_ptr <PreProc > ppP ;
ppP . r e s e t ( new PreProc ( " preProc " , inputP ) ) ; /∗ d e f a u l t parameters ∗/

/∗ Gammatone p r o c e s s o r i n s t a n t i a t i o n ∗/
shared_ptr <GammatoneProc > gtP ;
gtP . r e s e t ( new GammatoneProc ( " gammatoneProc " , ppP ) ) ; /∗ d e f a u l t ∗/

/∗ IHC p r o c e s s o r i n s t a n t i a t i o n ∗/
shared_ptr <IHCProc > ihcP ;
ihcP . r e s e t ( new IHCProc ( " i n n e r H a i r C e l l " , gtP ) ) ; /∗ d e f a u l t ∗/

/∗ C r o s s c o r r e l a t i o n p r o c e s s o r i n s t a n t i a t i o n ∗/
shared_ptr <C r o s s C o r r e l a t i o n > xcorrP ;
xcorrP . r e s e t ( new C r o s s C o r r e l a t i o n ( " xcorrP " , ihcP , wSizeSec , hSizeSec ,

maxDelaySec , wname ) ) ;

/∗ Launch the s u c c e s s i v e computations o f the p r o c e s s i n g t r e e ∗/
inputP−>processChunk ( e a r S i g n a l s [ 0 ] . data ( ) , e a r S i g n a l s [ 0 ] . s i z e ( ) ,

e a r S i g n a l s [ 1 ] . data ( ) , e a r S i g n a l s [ 1 ] . s i z e ( ) ) ;
inputP−>releaseChunk ( ) ;

ppP−>processChunk ( ) ;
ppP−>releaseChunk ( ) ;

gtP−>processChunk ( ) ;
gtP−>releaseChunk ( ) ;

ihcP−>processChunk ( ) ;
ihcP−>releaseChunk ( ) ;

xcorrP−>processChunk ( ) ;
xcorrP−>releaseChunk ( ) ;

/∗ Get the c r o s s −c o r r e l a t i o n r e s u l t i n the lOut v a r i a b l e ∗/
vector <vector <shared_ptr<twoCTypeBlock<double>>>> lOut =

xcorrP−>g e t L e f t W h o l e B u f f e r A c c e s s o r ( ) ;

Figure 5.5: Code snippet showing the processor instantiations and parameterisation, followed by
the successive methods calls required to get a cross-correlation result.

5.2 ROS implementation of the auditory front-end : rosAFE

The proposed AFE implementation encapsulates the openAFE library in a GenoM3
component. After a formalisation of the notion of concurrency between processors, its
design is outlined.

5.2.1 A short reminder on the proposed design

The algorithmic core of the AFE is made of the C/C++ openAFE library, which
implements—when possible—multi-threading and parallel computations inside one pro-
cessor. But considering the tree of processors shown in Figure 5.3, one can also highlight
another level of parallelisation between processors. This concurrency property is discussed
in the following, together with its actual implementation.
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A Some considerations about concurrency between processors

From the processor tree in Figure 5.3, only the root processor, i.e. the Input processor,
reads audio data from another component of the architecture (the BASS in practice).
Other processors are interconnected with a parent/child structure (Section 5.1.3). This
highlights two kinds of concurrency between processors.

Vertical concurrency While a processor works on a resource delivered by its parent, the
parent can already prepare the next resource. This kind of concurrency concerns for
instance the Input processor, the Pre-processor, the Gammatone processor and the
IHC processor in Figure 5.6.

Horizontal concurrency Children of a processor are mutually independent and can process
concurrently their parent’s output. This kind of concurrency concerns the Cross-
Correlation processor, the ILD processor and the Ratemap processor in Figure 5.6,
all of them having the same parent (the IHC processor).

B Formal design and generic architecture

A processor takes an input resource from its parent and produces an output resource to
its child(ren). As aforementioned, children of a same parent share a read access to a single
memory zone, managed by the parent. In addition, the parent processor owns a private
memory zone for its internal computation. With this memory management plan, each

Input-Processor

Pre-Processor

Filterbank (Gammatone)

Inner Hair Cell

RatemapILDCross Correlation

Figure 5.6: A tree of processors, leading to vertical (red) and horizontal (blue) concurrency.
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processor can be formalized by a state machine similar to Figure 5.7. A processor goes
through the following four distinct states, in a loop.

waitExec The processor is ready to read a new input resource, coming from its parent.

exec As soon as its parent releases the resource, the processor performs its computation.
It reads the input resource from its parent’s shared memory zone, and stores the
result of the computation—its output resource—in its own private memory zone.

waitRelease The processor stays in a waiting state while its children are still processing
the previous output resource it has released. Children lock the processor’s shared
memory zone.

release Once all children are done processing the previous output resource, the processor
can release the new one: it copies the content of its private memory zone to its
shared memory zone.

Additionally to these 4 functional states, the implementation requires the definition of the
start, stop and delete states to respectively initialize, stop and remove a processor from
the processing tree. These are not represented in Figure 5.7.

On this basis, the two aforementioned kinds of concurrency can be implemented as
follows.

B-1 Vertical concurrency Considering a serial chain of three processors, the interaction
between the three state machines describing them can be summarized as:

1. while in waitExec state, processor 2 needs a token issued after the release state of
its parent (processor 1 ) in order to fire the transition to the exec state;

2. while in waitRelease state, processor 2 needs a token issued after the exec state of
its child (processor 3 ) in order to fire the transition to the release state.

This is summarized in Figure 5.8(a).

Processor’s memory

Private Shared

waitExec Exec waitRelease

waitReleasewaitExec exec release

Figure 5.7: State machine and memory management of a processor.
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B-2 Horizontal concurrency Considering a parallel chain of two processors, both con-
nected to the same parent, the interaction between the three state machines describing all
of them can be summarized as:

1. when the parent processor parent leaves its release state, it issues individual tokens
allowing each child (child 1 and child 2 ) to fire the transition from waitExec to exec
state.

2. once a child leaves its exec state, it issues one token. The parent processor needs as
many tokens as it has children (two, here) to fire the transition from waitRelease to
release state.

This is summarized in Figure 5.8(b).

5.2.2 rosAFE : a ROS/GenoM module at the functional level

Contrarily to the MATLAB implementation of the AFE, a GenoM3 module enables concur-
rent processing. In view of the many concurrency and synchronisation properties outlined
in the previous section, GenoM3 greatly eases the specification and the development of
rosAFE . This is the subject of the next sections.

processor 1 processor 2 processor 3

waitRelease

waitExec

release

exec

(a) Vertical concurrency

Parent

Child 1

Child 2

2
waitRelease

waitExec

release

exec

(b) Horizontal concurrency

Figure 5.8: Petri nets for a serial (left) or parallel (right) chain of processors.
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A Description of the module

The following elements are defined in the dotgen file of the rosAFE component.

Activities In view of the proposed formal design for handling processor concurrency,
activities are used to actually implement the AFE processors state machine, with
one activity per processor. An activity declaration inside the .gen file is provided
in Figure 5.9. It shows that in addition to a list of specific parameters, a processor
activity is also defined by the state machine depicted in Section 5.2.1-B. This
implementation is generic, and every processor implementation relies on the same
activity declaration.

Tasks These are in charge of executing activities. Importantly, concurrency of multiple
tasks entailed in a GenoM3 component is included in the automatically generated
real time code, and is transparent to the user. For the ROS middleware, this is
implemented as the concurrent execution of one thread per task. In the proposed
implementation, each processor is associated to one activity, each of them being
executed in independent tasks, i.e., independent threads. Then, depending on the
number of cores, the host machine can either perform parallel processing or task
switching to run these threads concurrently. As indicated in the activity declaration
shown in Figure 5.9, a task preProc is also declared in the .gen file, see Figure 5.10.
Again, this declaration is generic, and all the processor activities have their own
dedicated tasks, which are all declared as periodic, with a period of 50 ms. Note that
this duration does not correspond to the time required for an activity to perform a
chunk computation. If more time is needed, then the activity goes on without any
problem, and is woken up again later.

Internal data structure (IDS) The IDS mainly contains a list of structures which actually
implement the processor objects defined in the openAFE library. This allows
each activity to access, through its corresponding processor instantiation, to its
parameters and computed audio representations. Moreover, the IDS also contains two
instantiations of a structure named flagMap, which contains all the synchronisation
signals needed to perform vertical and horizontal concurrency. This structure is
made of a list of names of the connected processors and a list of boolean flags by
which the parent processors notify their children that a new resource is available,
and children notify their parents that they are ready to read a new resource. The
first instantiation flagMapSt is dedicated to the tokens required to go from the
waitRelease to the release state, while the second one newDataMapSt allows to go
from the waitExec to the exec state. A change of flag is detected through an active
polling approach, where each processor periodically checks if a flag has reached an
adequate value, thus enabling the transition to their next state.

Ports They are described in a separate rosAFEInterface.gen file, which lists all the available
ports of the module, see Figure 5.12. The proposed implementation exhibits multiple
out ports:

• one for each processor, which allows another component to have access to a
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a c t i v i t y PreProc (
i n s t r i n g name = " preProc " : " The name o f t h i s preProc " ,
i n s t r i n g upperDepName = " input " : " The name o f the upper dependencie " ,
i n boolean pp_bRemoveDC = FALSE : " Flag to a c t i v a t e DC−removal f i l t e r " ,
i n double pp_cutoffHzDC = 20 : " C u t o f f f r e q u e n c y (Hz) o f DC−removal high−pass f i l t e r " ,
i n boolean pp_bPreEmphasis = FALSE : " Flag to a c t i v a t e the pre−emph . high−p . f i l t e r " ,
i n double pp_coefPreEmphasis = 0 . 9 7 : " C o e f f i c i e n t f o r pre−emph . comp . " ,
i n boolean pp_bNormalizeRMS = FALSE : " Flag f o r a c t i v a t i n g automatic gain c o n t r o l " ,
i n double pp_intTimeSecRMS = 0 . 5 : " Time c o n s t a n t ( s ) f o r automatic gain c o n t r o l " ,
i n boolean pp_bLevelScal ing = FALSE : " Flag to apply l e v e l s c a l i n g " ,
i n double pp_refSPLdB = 100 : "dB SPL c o r r e s p o n d i n g to input s i g n a l RMS value o f 1 " ,
i n boolean pp_bMiddleEarFilter ing = FALSE : " Flag to apply middle e ar f i l t e r i n g " ,
i n s t r i n g pp_middleEarModel = " j e p s e n " : " Middle ear model ( j e p s e n or lopezpoveda ) " ,
i n boolean pp_bUnityComp = FALSE : " Compensation to have maximum o f unity gain f o r

middle ear f i l t e r ( a u t o m a t i c a l l y t r u e f o r Gammatone and f a l s e f o r d r n l f i l t e r b a n k s ) "
) {

doc " P r i o r to computing any o f the supported a u d i t o r y r e p r e s e n t a t i o n s , the input s i g n a l
can be pre−p r o c e s s e d with one o f the f o l l o w i n g elements :
1 . D i r e c t c u r r e n t (DC) b i a s removal
2 . Pre−emphasis
3 . Root mean square (RMS) n o r m a l i s a t i o n
4 . Level s c a l i n g to a pre−d e f i e n d sound p r e s s u r e l e v e l (SPL) r e f e r e n c e
5 . Middle e ar f i l t e r i n g " ;

t a s k preProc ;
v a l i d a t e e x i s t s A l r e a d y ( l o c a l i n name , l o c a l i n upperDepName , i n : : i d s ) ;

c o d e l <s t a r t > s t a r t P r e P r o c ( l o c a l i n name , l o c a l i n upperDepName , i n o u t
p r e P r o c e s s o r s S t , i n o u t flagMapSt , i n o u t newDataMapSt , i n o u t i n p u t P r o c e s s o r s S t , i n i n f o s
, port out preProcPort , /∗ Arguments Of p r o c e s s o r ∗/ l o c a l i n pp_bRemoveDC , l o c a l i n
pp_cutoffHzDC , l o c a l i n pp_bPreEmphasis , l o c a l i n pp_coefPreEmphasis , l o c a l i n
pp_bNormalizeRMS , l o c a l i n pp_intTimeSecRMS , l o c a l i n pp_bLevelScaling , l o c a l i n
pp_refSPLdB , l o c a l i n pp_bMiddleEarFiltering , l o c a l i n pp_middleEarModel , l o c a l i n
pp_bUnityComp ) y i e l d waitExec , stop ;

// The s t a t e Machine , s t a r t
c o d e l <waitExec> waitExec ( l o c a l i n name , l o c a l i n upperDepName , i n o u t newDataMapSt )

y i e l d pause : : waitExec , exec , ether , d e l e t e ;
c o d e l <exec> execPreProc ( l o c a l i n name , l o c a l i n upperDepName , i n o u t : : ids , out flagMapSt )

y i e l d w a i t R e l e a s e ;
c o d e l <waitRelease > w a i t R e l e a s e ( l o c a l i n name , i n o u t flagMapSt )

y i e l d pause : : waitRelease , r e l e a s e , stop ;
c o d e l <r e l e a s e > r e l e a s e P r e P r o c ( l o c a l i n name , i n o u t : : ids , out newDataMapSt , port out

preProcPort )
y i e l d pause : : waitExec , stop ;

// The s t a t e Machine , end

c o d e l <d e l e t e > d e l e t e P r e P r o c ( l o c a l i n name , i n o u t p r e P r o c e s s o r s S t , port out preProcPort )
y i e l d e t h e r ;

c o d e l <stop> stopPreProc ( i n o u t p r e P r o c e s s o r s S t )
y i e l d e t h e r ;

throw e_noUpperDependencie , e_existsAlready , e_noSuchProcessor ;
} ;

Figure 5.9: .gen extract, specifiying the PreProc processor as a GenoM3 activity and highlighting
the state machine structure of the activity.

t a s k preProc {
p e r i o d 50ms ;

} ;

Figure 5.10: .gen extract, specifiying the PreProc task in which the PreProc activity is run.
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i d s {
rosAFE : : i n f o s i n f o s ;

i n p u t P r o c e s s o r s i n p u t P r o c e s s o r s S t ;
p r e P r o c e s s o r s p r e P r o c e s s o r s S t ;
gammatoneProcessors gammatoneProcessorsSt ;
i h c P r o c e s s o r s i h c P r o c e s s o r s S t ;
i l d P r o c e s s o r s i l d P r o c e s s o r s S t ;
ratemapProcessors ra tem ap Pro ce sso rs St ;
c r o s s C o r r e l a t i o n P r o c e s s o r s c r o s s C o r r e l a t i o n P r o c e s s o r s S t ;

flagMap flagMapSt ;
flagMap newDataMapSt ;

} ;

Figure 5.11: .gen extract, specifying the internal data structure (IDS) of the component.

specific audio representation; this representation is made available on a chunk-
by-chunk basis through the getLastChunkAccessor() methods of the processor
signal instances defined in the openAFE library (see Section 5.1.2); these ports
are declared as being multiple, thus allowing multiple instances of the same
processor to deliver their outputs;

• a global out port, including all the outputs from all running processors instances;
this port is refreshed thanks to the getWholeBufferAccesor() method which
applies to all processor’s signal instances, also defined in the openAFE library.

Functions For utility purposes these are

• getSignals(), which allows to have access to the new audio representations
computed by all running processors;

• getDependencies(), returning a string vector with all the processor names
required to compute a given audio representation;

• getParameters(), which returns all the parameters of each running processor;
• modifyParameter(), allowing to set the value of a processor’s parameter;
• removeProcessor(), which destroys an instance of an existing processor (to stop it);
• Stop(), which stops all running processors.

All these functions are of high interest for any rosAFE client. They are extensively
used by the MATLAB client described in Section 5.3.

i n t e r f a c e rosAFEInter face {

port out rosAFE : : dataObjSt dataObj ;

port out rosAFE : : TimeDomainSignalPortStruct inputProcPort ;
port m u l t i p l e out rosAFE : : TimeDomainSignalPortStruct preProcPort ;
port m u l t i p l e out rosAFE : : TimeFrequencySignalPortStruct gammatonePort ;
port m u l t i p l e out rosAFE : : TimeFrequencySignalPortStruct i h c P o r t ;
port m u l t i p l e out rosAFE : : TimeFrequencySignalPortStruct i l d P o r t ;
port m u l t i p l e out rosAFE : : TimeFrequencySignalPortStruct ratemapPort ;
port m u l t i p l e out rosAFE : : C r o s s C o r r e l a t i o n S i g n a l P o r t S t r u c t c r o s s C o r r e l a t i o n P o r t ;

} ;

Figure 5.12: rosAFEInterfac.gen extract, specifying the ports (inputs/outputs) of the component.
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5.3 A MATLAB client and supervisor for rosAFE

Any tool able to dialog with ROS nodes and to connect to their ports/topics can be used as
a client to rosAFE . But for now, only basic tasks can be envisaged: launching a processor,
stopping it, etc. In other words, rosAFE basically encapsulates all the functionalities
of the openAFE library inside a ROS node, but with all the functionalities of ROS and
GenoM3 concerning input/outputs specifications, tasks concurrency, etc. as a benefit.
This means that the rosAFE client still has to dynamically configure “by hand” the
processing tree, depending on the required audio representation. The main objective
of this section is to describe a MATLAB interface of rosAFE which will automatically
handle such considerations, by generating a tree of processors inside a single request. For
instance, asking for an ILD computation must automatically instantiate all the processors
required for this representation. This interface remains highly inspired by the genuine
MATLAB AFE, and thus allows a smooth transition between the MATLAB and ROS
implementations of the AFE.

The proposed MATLAB interface does not communicate directly with the rosAFE node.
Instead, it exploits the matlab-genomix client in charge of the control of GenoM3/ROS
components through the genomix and/or rosix servers (see Figure 3.3 page 15). This imple-
mentation is hidden to the user, so that the proposed MATLAB interface can be envisaged
as a MATLAB client to rosAFE . It is considered as such below.

Exactly like the original MATLAB AFE, the proposed client entirely relies on an object-
oriented framework, where two main objects are needed to extract any representa-
tion:

• a data object, in which the signal(s), the requested representation(s), and also the
dependent representation(s) that have been computed in the process can be stored;

• a manager object, which takes care of creating the necessary processors as well as
managing the computations.

5.3.1 Data Object

According to the AFE documentation6, many signal objects are instantiated by the AFE
(one per representation involved and per channel). To organize and keep track of them,
they are collected in a dataObject class.

While signals are instantiated underMATLAB in the original AFE implementation through
the dataObject object, the proposed ROS client sends request to actually instantiate them
inside rosAFE . But in order to make these calls transparent to the user, a similar
dataObject_rosAFE is still instantiated in MATLAB. It handles communications with
rosAFE , keeps track of all MATLAB signals, and updates them when asked to. The

6 http://docs.twoears.eu/en/latest/
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5.3 A MATLAB client and supervisor for rosAFE

% Parameters f o r data o b j e c t
sampleRate = 4 4 1 0 0 ;
b u f f e r S i z e _ s _ b a s s = 1 ;
bufferSize_s_rosAFE_port = 1 ;
bufferSize_s_rosAFE_getSignal = 1 ;
bufferSize_s_matlab = 1 0 ;
inputDevice = 'hw : 2 , 0 ' ; % Check input d e v i c e ID with bass . L i s t D e v i c e s ( ) ;
framesPerChunk = 1 2 0 0 0 ; % Each chunk l a s t s ( framesPerChunk / sampleRate ) seconds .

% Data Object i n s t a n c i a t i o n
dObj = dataObject_RosAFE ( bass , rosAFE , inputDevice , sampleRate , framesPerChunk , . . .

buf ferS ize_s_bass , bufferSize_s_rosAFE_port , bufferSize_s_rosAFE_getSignal , . . .
buf ferSize_s_matlab ) ;

Figure 5.13: Minimal MATLAB code required to instantiate a dataObject_rosAFE object.

Figure 5.14: A data object instance after requesting an ILD and a pre-processor.

code needed to instantiate the data object is shown in Figure 5.13. As a result, the dObj
variable contains seven default properties: three of them refer to different buffer sizes (in
seconds), while other ones are related to the amount of frames per chunks, the sample
rate, and to rosAFE and BASSGenoM3 components (which are obviously connected
to each other). If an ILD computation has been requested (see next subsection), then
the dObj variable is completed with additional properties, each of them related to the
signals computed by all the processors required to obtain an ILD, see Figure 5.14. These
properties are automatically refreshed (i.e., read from the corresponding rosAFE port)
when accessed from MATLAB. This means that every computed auditory representation
can be loaded to MATLAB, and sent to the higher, cognitive levels of the Two!Ears
architecture. Those representations are appended to the signal instances ported from
the original AFE as shown in Figure 5.15. These instantiations have exactly the same
definition as in the original AFE, thus making transparent the use of rosAFE to the
user.

5.3.2 The manager object

According to the AFE documentation, the manager class is fundamental in the AFE
framework. It is responsible for, from a user request, instantiating the correct processors
and signal objects, and linking these signals as inputs /outputs of each processor. In a
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5 Bringing the Auditory Front-End into the ROS architecture

(a) An empty signal instance. (b) A full signal instance.

Figure 5.15: Two Time Domain Signal instances: (a) no chunks are available in the object; (b)
10 seconds of signal are available.

standard session of the AFE, only a single instance of this class is created. It is with this
object that the user interacts.

In the proposed MATLAB client implementation, the very same manager class
manager_rosAFE as in the genuine AFE is modified to communicate with rosAFE .
Instead of instantiating the processors directly in MATLAB, a request to the GenoM3
module is sent via the genomix server. The related processor and signals are then auto-
matically created and routed in rosAFE . In the same vein, this class implementation can
handle any top/down processing requests (changes in some processors parameters, via the
corresponding call to modifyParameter() function in the GenoM3 module), destruction of
some processors (via removeProcessor()) and transmission of the outputs from processors
to MATLAB (by reading the corresponding GenoM3 ports). In MATLAB, the processor
is instantiated with the code shown in Figure 5.16. Differently from the MATLAB AFE,
a processor immediately computes its output(s) when instantiated from the MATLAB
rosAFE client. This means that as soon as data are available on its input(s), these are
processed and the resulting audio representation is published on its corresponding GenoM3
port(s), even if the proposed manager does not explicitly ask to actually process audio
chunks. This was the role of the processChunk() method in the genuine AFE, while
this method is now used to load the processed audio representation from the GenoM3
environment to the MATLAB environment. From the user viewpoint, this slight change in
the method is transparent, and processChunk() still presents the asked audio representation
as output.

The proposed manager_rosAFE class is made of three properties, see Figure 5.17. The
last two are handles to rosAFE and to the dataObject MATLAB class. The first property
Processors is a list of all running processors, see Figure 5.18a. Importantly, all the listed

% Manager i n s t a n c i a t i o n
mObj = manager_RosAFE ( dObj ) ;

% Add a ILD p r o c e s s o r with d e f a u l t p r o c e s s i n g parameter
mObj . addProcessor ( ' i l d ' ) ;

Figure 5.16: Minimal MATLAB code required to instantiate a manager_rosAFE object, and to
launch the computation of an ILD representation in rosAFE .
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(a) An "empty" manager. (b) A manager with running processors.

Figure 5.17: Manager instances.

processors are actually instantiated inside rosAFE , and not inside MATLAB. This means
that the object manager_rosAFE does not contain any processor, but only information
on them. Those information are stored inside each processor description, made of all
the processor parameters directly read and updated from rosAFE , see Figure 5.18b.

5.3.3 Code example

In order to illustrate how the proposed MATLAB client can be used together with rosAFE
to compute an audio representation, the minimal code required to obtain an ILD is shown
in Figure 5.19. The same figure also shows how the same auditory representation can
be computed from the genuine MATLAB AFE. Except the data object instantiation,
where some specific parameters for the BASS and rosAFE nodes must be specified, all the
remaining code is identical between the two AFE implementations, enhancing a smooth
transition between them.

(a) Instance of all informations of
currently running processors: 1
input, 2 preprocessors, 1 filter-
bank, 1 Inner Hair Cell, 1 ILD
and 0 Ratemap.

(b) Details on the first pre-
processor in the tree.

Figure 5.18: manager_rosAFE details: (a) list of running processors; (b) parameters read from
rosAFE for one of the two running instances of the preProcessor processor.
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fsHz = 4 4 1 0 0 ;
b u f f e r S i z e _ s = 1 0 ;
channelNumber = 2 ;

% Empty Data Object
dObj = dataObject ( [ ] , fsHz , b u f f e r S i z e _ s ,

channelNumber ) ;

% Empty Manager Object
mObj = manager ( dObj , [ ] ) ;

% IHC p r o c e s s o r parameters ( o p t i o n a l )
ihc_method = ' dau ' ;
par=genParStruct ( ' ihc_method ' , ihc_method ) ;

% Adding a p r o c e s s o r
mObj . addProcessor ( ' i l d ' , par ) ;

% Request p r o c e s s i n g
mObj . processChunk ( ) ;

% Parameters f o r data o b j e c t
fsHz = 4 4 1 0 0 ;
b u f f e r S i z e _ s _ b a s s = 1 ;
bufferSize_s_rosAFE_port = 1 ;
bufferSize_s_rosAFE_getSignal = 1 ;
bufferSize_s_matlab = 1 0 ;
inputDevice = 'hw : 2 , 0 ' ;
framesPerChunk = 1 2 0 0 0 ;

% Data Object
dObj = dataObject_RosAFE ( bass , rosAFE , . . .

inputDevice , fsHz , framesPerChunk , . . . ,
buf ferS ize_s_bass , . . .
bufferSize_s_rosAFE_port , . . .
bufferSize_s_rosAFE_getSignal , . . .
buf ferSize_s_matlab ) ;

% Manager Object
mObj = manager_RosAFE ( dObj ) ;

% IHC p r o c e s s o r parameters ( o p t i o n a l )
ihc_method = ' dau ' ;
par=genParStruct ( ' ihc_method ' , ihc_method ) ;

% Adding a p r o c e s s o r
mObj . addProcessor ( ' i l d ' , par ) ;

% Request p r o c e s s i n g
mObj . processChunk ( ) ;

Figure 5.19: MATLAB code required to compute an ILD: (left) by using the genuine MATLAB
AFE; (right) by using the proposed MATLAB client to rosAFE (initialisation of the two environ-
ments is not shown).

5.3.4 Evaluation and limitations of the current design

A first evaluation is proposed, related to the comparison of the outputs from each processor.
It consists in computing, for the same input signal, the Root Mean Square Error (RMSE)
between the MATLAB and openAFE outputs from each processor. Table 5.1 exhibits this
list of RMS errors, together with the parameters set during this evaluation. It can be
shown that both implementations exhibit similar outputs, with RMS errors almost close
to 0 for all of them.

The results listed in Table 5.1 clearly show that similar processor outputs are computed
from openAFE . However, one has to keep in mind that all these outputs, once used

Processor RMSE

Input Processor 0
DC removal filter (cutoffHzDC = 20) 6,73e-10
Pre-emphasis filter (coefPreEmphasis = 0.97) 0
Binaural RMS normalisation (intTimeSecRMS = 0.5) 0
Level Scaling (refSPLdB = 10) 0
Gammatone Filterbank (default parameters) 2.5243e-12
Inner Hair Cell (method = dau) 1.67e-12
Interaural Level Difference (wname = hann) 9.11e-7
Ratemap (wname = hann) 5.34e-15
Cross-correlation 2.3e-7

Table 5.1: Root Mean Square Errors (RMSE) on 42921 frames of audio (mean of RMS errors if
the processor has more than one channel).
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together with ROS in rosAFE , are published in the ROS environment, and must then be
loaded inside MATLAB to be distributed to other high-level stages of the architecture.
Table 5.2 lists the size (in MB) of each processor output(s) for 1 second of data. It
can be seen that depending on the audio representation, transferring the output of one
processor to MATLAB can represent a huge amount of data, which must be handled by
the matlab-genomix bridge. But this interface between the ROS and MATLAB worlds
exploit a TCP/IP connection model, which does not allow to envisage the simultaneous
transmission of all processor outputs at the same time in a guaranteed time interval.
But independently from these MATLAB/ROS communication considerations, all the
processors simultaneously publish their outputs in real-time: for instance, if rosAFE is
parameterized to request 12000 frames at once from BASS at a sampling frequency of
44100 Hz, all the processors actually publish their computed auditory representations at
approximately 3.675Hz (44100/12000), as expected. One solution is then to request the
output from one processor at a time, which is then transmitted to MATLAB in real time
without any issue.

A final evaluation consists in comparing the computation time needed by a processor for the
MATLAB and C++ versions of the AFE. This comparison only concerns the algorithmic
part, i.e., the processor implementation in openAFE . Table 5.3 exhibits the time required
to compute each audio representation in seconds. Each value corresponds to the average
computation time of 100 iterations of one processor, feeded by left and right chunks made
of 2205 frames. The evaluation was conducted on a computer with an Intel 4-Core i5-4670S
CPU @3.10GHz / 8Gb RAM. Results show that the proposed C++ implementation
is almost 50 times faster than the MATLAB version, thus highlighting the benefits of
an AFE right at the functional level for the deployment system. The cross-correlation
processor exhibits surprisingly low performances, showing that some code optimisation
is still required here. This work is ongoing, and there is no doubt this processor will
also benefit from the speedup introduced by the C/C++ implementation of the AFE.
Importantly, this evaluation only concerns openAFE implementations, which does not
implement processor concurrency. One then can expect a better speedup with the ROS
implementation.

Processor Type Mean Size
Input 0.71MB
Pre-Proc 0.71MB
Gammatone 21.87MB
Ihc 21.87MB
Ild 24.96KB
Ratemap 49.88KB
Cross-Correlation 2.47MB

Table 5.2: Size of the proces-
sors output ports for 1 second of
data.

Processor Type Matlab openAFE Ratio
Input + normalisation 1e-4 7.3e-6 13.7
Pre-Proc (DC filter) 1.1e-3 7.8e-6 141.5
Pre-Proc (Pre emphasis) 1.2e-3 9.09e-6 132
Pre-Proc (RMS normalisation) 1.2e-3 3.05e-5 39.4
Pre-Proc (Level scaling) 1.6e-3 9.08e-6 176.2
Gammatone 5.1e-3 0.968e-3 5.3
IHC 2.8e-3 0.73e-3 3.84
ILD 4.3e-3 1.16e-3 3.71
Ratemap 6.8e-3 1.83e-3 3.71
Cross-correlation 26.2e-3 30.6e-3 0.86

Table 5.3: Matlab vs openAFE average computation time
(in seconds) for each processor.
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6 Components for sensorimotor and visual
functions

Audio-motor source localisation can be obtained by combining binaural data streamed by
the Binaural Audio Stream Server (BASS) with motor commands sent to the binaural
head. These motor commands can even be generated in closed-loop in order to improve
the information held in the localisation. This is the role of information-based sensorimotor
feedback designed in WP4 and depicted into Section 4.2.7 (“b7”) of Deliverable D4.3@m36.
As no cognition/decision is involved in this design, it has given rise to a GenoM3/ROS
component, which is the topic of Section 6.1.

Other knowledge sources and hypothesis-driven feedbacks designed in WP3 and WP4
rely on the incorporation of the visual modality. Consequently, specific GenoM3/ROS
modules have also been designed to extract higher-level information from the raw stereo-
scopic video stream. These concern either people (Section 6.2) or objects (Section 6.3)
perception.

6.1 Active audio-motor and information-based localization

Binaural sensing and motor commands of the KEMAR head can be jointly processed
and/or interwoven so as to actively localize one source in the horizontal plane, along the
three-stage framework described in Section 2.8 of Deliverable 4.2@m24, in (Bustamante
et al., 2015) and in references therein.

6.1.1 Implementation

Stage A implements the maximum likelihood estimation of the source azimuth and
the information-theoretic detection of its activity from the short-term left and right
spectrograms. Stage B assimilates these azimuths over time and combines them with
the motor commands into a stochastic filter, leading to the posterior probability density
function (pdf) (or “belief”) of the head-to-source relative position. This stage enables
front-back disambiguation and range recovery. The computed posterior pdf is an input to
a feedback controller (Stage C, also termed “sensorimotor feedback”) which determines
the head motion leading to the next best (i.e., most informative) source localization. More
precisely, the admissible finite head translation and rotation are determined which lead,
on average, to the minimum entropy of the posterior pdf at the next sampling time, when
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the exploration is guided by the Woodworth-Schlosberg approximation of ITD between
antipodal microphones over a spherical head. Roughly speaking, if the belief at time k
is Gaussian and described by a 99%-probability confidence ellipse Ek with center Ek and
minor axis ∆k (resp. major axis ∆k), then the localization uncertainty at next time k + 1
can be decreased by translating the sensor and rotating its fovea towards Ek in the direction
of ∆k (Bustamante et al., 2016c)(Bustamante et al., 2016a)1.

A GenoM3/ROS component named binauloc has implemented these ideas. It interacts
with other components of the functional layer along Figure 6.1. binauloc takes as input the
audio stream from the Binaural Audio Stream Server (BASS) and the motor flow from
the modules in charge of the displacement of the kemar head and the locomotion of the
mobile base. Stage A outputs a pseudo-likelihood of the source azimuth every 58ms, on
the basis of a 1-second sliding window of binaural signals. Stage B computes a Gaussian
mixture approximation of the posterior pdf of the head-to-source relative position at
approximately 6Hz. The update stage of the underlying stochastic filter entails a Gaussian
(unnormalized) mixture approximation of the azimuth pseudo-likelihood produced by
Stage A. This approximation and the noise statistics of the prior dynamics have been
empirically tuned so as to ensure reproducible and slightly conservative conclusions. The
posterior weights, means and covariances produced by Stage B are published on a port
of binauloc. Another component portrays this posterior pdf in a graphical manner by
plotting the 99%-probability confidence ellipses of its hypotheses, with a color expressing
their weights. binauloc also solves the constrained optimization problem leading to the
information-based optimum head motion as per Stage C, then publishes the position
profiles to be applied on the left and right wheels of the robot and on the KEMAR neck.

6.1.2 Experiments

The experiments simulated in Deliverable D4.3@m36 were conducted on Jido in an open-
space 15m × 5m × 8m area delimited by dividing walls made of resin, with limited
reverberation. The results of the audio-motor localization for several motion strategies
as well as the genuine position of the source measured by a real-time motion capture
system (with submillimetric accuracy) are displayed in Figure 6.3. A translation along
the interaural axis reduces the uncertainty on the distance to the source but cannot
disambiguate front from back. A pure rotation (not shown) would resolve front-back
ambiguity but cannot recover the source range. A circular motion enables both azimuth
and range recovery. The active motion drives the head in the same way as in the simulation.

The entropy of the moment-matched approximation of the state posterior pdf is reported
in Figure 6.2. Though the circular motion is interesting for early instants, its benefits
then vanish because the source is viewed from the interaural axis. Similar results ob-

1 The reference (Bustamante et al., 2016b) proposed a preliminary solution to this problem by means of
a gradient ascent method.
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tained in the simulation are discussed in Deliverable D4.3@m36. The whole three-stage
framework runs in 5ms on the i7 quadcore @2.8GHz 16GB RAM laptop connected
to Jido.
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Figure 6.1: The binauloc GenoM3/ROS component for active binaural localization and the data
flows enabling its interaction with other modules of the functional layer.
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(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

Figure 6.3: Single-source localization for different scenarios: (a,b,c,d) translation of the head
along the interaural axis; (e,f,g,h) circular movement; (i,j,k,l) active motion. Snapshots (a–l)
of the localization process display in the initial frame F0 the binaural head (front direction in
dashed red, interaural axis in dashed blue): the source (in red); and the 99%-probability confidence
ellipses of the hypotheses constituting the Gaussian mixture belief. The corresponding times are:
(a,e,i) t = 1 s; (b,f,j) t = 10 s; (c,g,k) t = 20 s; (d,h,l) t = 28 s.
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6.2 Visual functions for human detection and tracking

One GenoM3 module was coded to provide appearance-based detection of humans in a
pair of rectified stereo images, and recovery of their 3D positions. It incorporates functions
from OpenCV ’s off-the-shelf “Haar feature based cascade classifier for object detection”2,
which is based on a boosted cascade of classifiers (Viola and Jones, 2001). On this basis,
another module was implemented that also incorporates tracking.

The steps followed in the GenoM3 modules are the following:

1. Perform detections on left and right images;

2. Match detections between the left and right images in two steps:

2.1. Perform template matching;

2.2. Check if the consequent pairs of detections are on the same epipolar lines;

3. (If tracking is required), track detections along time;

4. By triangulation, recover the positions of the 3D points which led to matched detections.

6.2.1 Detection

Even though the Viola-Jones algorithm was initially designed for face detection, any object
can be detected by training a cascade of classifiers. The key to get an efficient cascade is to
train it on a suitable dataset. OpenCV includes several ready-to-use cascades (Table 6.1)
as they have been trained on very good datasets, making them robust with very high
detection (true-positive) rate and very low false-positive rate.

Frontal face Profile face Eyes
Mouth Nose Ears

Upper Body Lower body Full body

Table 6.1: Robust trained cascades included in OpenCV .

The GenoM3 modules rely on an .xml file listing the potentially used cascades. By
default, the first element of the list is selected, but this behaviour can be changed
online. This list may include cascades shown in Table 6.1 as well as custom user-trained
cascades. Note that only detection is performed (e.g. “faces” vs “non-faces”), but
not recognition.

2 http://docs.opencv.org/2.4/modules/objdetect/doc/cascade_classification.html
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6.2.2 Matching

Detections from the left and right images have to be accurately matched in order to
triangulate a meaningful 3D point. This is done in two steps. First, each pair of left
and right detections are compared with OpenCV ’s Template Matching3. The underlying
similarity measure is the Normalized Cross-Correlation (Lewis, 1995). Whenever its value
(in the interval [0; 1]) gets greater than a user-selected threshold, a match is detected
and the second step starts. It consists in checking whether the matched detections
lie on the same epipolar line, up to a user-defined tolerance (in pixels) related to the
desired accuracy. So, a convenient calibration of the stereo rig must have been done
beforehand.

6.2.3 Tracking

Tracking is performed by means of the Decentralized Particle Filter (DPF), a multiple-
target tracker based on the “tracking-by-detection” paradigm, entailing one tracker per
target. Its is based on the well-known ICondensation (Isard and Blake, 1998) particle filter.
This sequential Monte Carlo approach improves the efficiency of the weighted particle
approximation of the posterior pdf by means of an importance sampling function taking
into account detections. A variation of the DPF implementation presented in (Moussy
et al., 2015) is employed. It entails a rich multi-template appearance model, which leads
to higher true-positive and lower false-positive tracking rates.

Tracking is only implemented on the left camera, but only considering these detections
which also matched in the right camera through the process described above. This saves
computation time without limiting performances. The unique ID assigned to each track
on the left video sequence is then reported on the right stream.

This DPF tracker code is not published under an open-source licence.

6.2.4 Triangulation and Publication of 3D information

Equations from Section 4.3.2 enable the recovery of the X-Y -Z positions and azimuths of
the 3D points which have given rise to matched pairs of left and right detections. The
(Ui, Vi) image coordinates are just set to the centers of the bounding boxes drawn in the
detection process. The recovered 3D positions are published on a ROS topic into a buffer
whose size changes along time, depending on the number of detected people and the size
of the history to be published. In other words, a list of structures similar to the following
is published at each time:

3 http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/
template_matching.html
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• Frame number

• Timestamp

• Detections
– ID
– 3D coordinates.

6.3 Visual functions for object detection and localization

Deliverable D5.2@m24 presented the development of ROS packages for the learning and
detection of objects on the basis of dense 3D point clouds coming from a depth sensor.
Though the underlying Linemod multi-modal detection algorithm led to good results,
its performance significantly dropped when using the stereoscopic sensor suited to the
KEMAR head, due the the sparsity of the reconstructed 3D point cloud. So, appearance
based methods for object detection and segmentation have been looked for. To this
aim, a GenoM3 module was coded. It reads the topic published by the off-the-shelf
find_object_2d4 ROS package (Labbé, 2011) suited to multiple-object detection, then
performs triangulation, then publishes the results in the same way as it was done for
human detection in Section 6.2.

6.3.1 Detection

The find_object_2d ROS package incorporates OpenCV ’s implementations of several
vision based feature detectors and descriptors, such as SIFT, SURF, FAST and BRIEF.
These detectors and descriptors, as well as many other parameters, can be chosen by
the user through a very intuitive GUI, as shown in Figure 6.4. After extensive trials,
the combination of Features from Accelerated Segment Test (FAST) detector (Rosten
and Drummond, 2006) and Binary Robust Independent Elementary Features (BRIEF)
descriptor (Calonder et al., 2010) was chosen as it gave the best compromise in terms of
speed and robustness to perception conditions.

find_object_2d relies on an object’s database. The user can build it from images taken
beforehand or online (Figure 6.4). The building process consists in placing the object in
front of the camera and taking a picture of it within the GUI. Then, the region to detect
is selected and added to the database. At this stage, it is possible to know the number of
features which can be detected from the image. The more features there are, the better
the detection will be.

Figure 6.5 shows how detections work. Each object from the database is assigned a unique
ID number and a bounding box around it is drawn when it is detected. The IDs as well as

4 http://wiki.ros.org/find_object_2d
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the coordinates of the bounding boxes of the detected objects are published on a single
ROS topic.

For the purpose of Two!Ears, which involves a moving robot, multiple images of each
object taken from different angles and distances showed the best results. This approach
leads the GUI to consider multiple objects while this is in fact the same one. This is solved
in the GenoM3 module. Once all the images related to an object have been taken, the
user writes a file associated to this object, containing the associated IDs, and names it
with a common label. For example, if the database is composed by five images of a phone
(IDs 0 to 4) and five images of a loudspeaker (IDs 5 to 9), then the file “phone” contains
the numbers 0 to 4 while another file “loudspeaker” contains the numbers 5 to 9. So, the
GenoM3 module extracts all the detected IDs on the topic published by find_object_2d,
and has just to extract the label(s) they correspond to.

As mentioned before, multiple images of the same object imply multiple detections of this
object. But this easily solved by considering that the object lies within the area where all
the bounding boxes overlap.

6.3.2 Triangulation

Triangulation is dealt in the same way as described in Section 4.3.2. 3D positions are
retrieved on the basis of the centers of bounding boxes, then published on a ROS topic.
The resulting 3D location is not as accurate as the results depicted for the triangulation
of 3D points because the center of the bounding box in the two images does not really
correspond to the same 3D point in space.
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Figure 6.4: find_object_2d’s GUI. Adding an object to the database.

Figure 6.5: How detections are shown on the find_object_2d’s GUI.
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7 Appendix

7.1 Odi documentation and user manual overview

This appendix deals with the Odi platform, and provides all the details needed to make it
ready for experiments with the Two!Ears system.

7.1.1 Odi preparation

A Unpacking

Odi is made of the following parts:

• 1 mobile platform,
• 1 battery charger,
• 8 JACK cables 5.5x2.1mm,

(a) Odi design

Wifi 
antenna

On/Off
Power plug

Connector
panel

Embedded PC
and peripherals

Mounting of
the HATS

(b) Odi overview

Figure 7.1: Details on the Odi platform.
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• 1 KEMAR HATS support,

everything being packed inside a single package, see Figure 7.2. To unpack the overall
system:

• put the package on the floor (use the "UP" indicators on the package to put it on
the correct side),

• use an electric screwdriver to remove all the screws on the front and back sides of
the package,

• remove all the straps on the mobile platform,
• pick all the boxes containing the HATS supports, battery charger, etc. out of the

package,
• straighten the platform (you will need at least 2 persons, the robot weighting about

50kg).

Figure 7.2: Odi package.
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B Mounting the KEAMAR HATS on Odi

Step 1: The access to the HATS support
is on the right side of the robot.

Step 2: Unscrew the hatch with the
adequate screwdriver.

Step 3: Place the provided brace and
the tripod in the indicated order above.
Be careful to correctly align the 4 holes.

Step 4: Insert one screw inside one of
the hole of the brace and tripod and
check the concentricity of the system.

Step 5: Place the KEMAR HATS on the tripod by aligning the holes, then insert the
screws and fix them. Finally, close the hatch.
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C Access to the embedded computer, and peripheral devices installation

Step 1:

• The ON/OFF switch at the back
must be in the STOP position (ver-
tical position).

• The emergency switch must be ON.

Step 2:

• Open carefully the hatch on the
back of the robot. The hatch is
maintained closed thanks to mag-
nets.

Step 3:

• The rack for peripheral devices is
just in front. It initially embeds the
computer (in red), the wifi module
(in green) and the LIDAR interface
(in blue).

• This rack contains also space for
the audio Babyface USB interface,
the 2 microphones conditioner sys-
tems, and the head motor con-
troller.
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Step 4: babyface installation

• Put the RME Babyface USB audio
interface where indicated and use
the supplied connectors to fix it on
the rack.

• The USB cable coming out the
Babyface must be directly plugged
in the embedded computer on one
of the available USB port.

Step 5: head motor controller in-
stallation

• Put the motor controller where in-
dicated and use the supplied con-
nectors to fix it on the rack.

• Have a look on §D to connect the
power supply to the motor con-
troller.

• The 24V power line must be con-
nected to the motor controller.

Step 6: microphone conditioners
installation

• Put the two microphone condition-
ers (MMF M28) where indicated,
and use the supplied connectors to
fix them on the rack.
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D Internal power supplies

Opening the hatch at the back of the robot allows to have access to all power supplies
lines, providing 5V, 12V and 24V (regulated). Be careful to first turn off the overall
system thanks to the switch at the back of the robot before accessing the power supplies.

GND 24V
battery

24V
battery

GND 24V
regulated

24V
regulated

5V
regulated

GND 12V
regulated

GND 5V
regulated

12V
regulated

Figure 7.3: Odi power supplies, exhibiting the 5V, 12V and 24V voltage lines.

E Odi rear panel

The rear panel is detailed in Figure 7.4. Note that a push on the emergency stop button
automatically stops the motorization of the robot, but does not power off other devices.

24V 12V 5V

WIFI
antenna

ON/OFF
Emergency stop

Power

Emergency stop ON/OFF

Charge base ON light

Power
panels

Power
plugs

Power
plugs

Power
plugs7x USB3.04x Ethernet

Figure 7.4: Odi rear panel, showing all the connectors available from outside the robot.
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F Odi maintenance

The battery inside the robot is a lead-acid battery with a capacity of 408Wh. It enables
the robot to operate autonomously for about 6 to 8 hours, depending on the robot task
and the peripheral devices used. In order to maximize the battery lifetime, the robot must
be charged directly after each use (please avoid deep cycles which can significantly degrade
the battery lifetime).

To recharge Odi battery :

• verify that the robot is turned off,

• use the provided battery charger and connect it to a wall socket or any other electrical
outlet,

• connect the charger outlet inside the adequate connector on the rear panel (see
Figure 7.4),

• unplug the charger once the charging light turns green.

A full charge takes about 2 to 5 hours, depending on the battery state.

7.1.2 Odi software aspects

A Peripheral devices software installation

A-1 RME Babyface This USB audio device works out of the box with the legacy driver
on Linux. This is made possible by updating the Babyface firmware to any version up to
v200. If the audio device is not automatically recognized by the system, one then must put
it in legacy mode manually. This is done by pressing simultaneously the Select and Recall
buttons while reconnecting the USB device to the computer. Then, the “class compliant”
mode is started on the device, allowing it to be recognized as a standard audio interface
by the operating system.

On Odi, the RME Babyface is automatically recognized as the 2nd USB hardware device,
which can then be directly accessed to by using the Audacity software1 or the arecord
command line utility. Note that to have access to the device, the user must type in any
console:
> sudo usermod −a −G audio u s e r

A-2 Webcam Odi is not provided with any vision system. Nevertheless, almost any
webcam can be easily used to access visual information. Like for the audio device, the
user must be authorized to access the device first:

1 http://www.audacityteam.org/
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> sudo usermod −a −G video u s e r

Then, if the pictures to be captured must be used with ROS , one has to install the usb_cam
and usb_cam_node on the system:
> sudo apt−ge t i n s t a l l ros−in digo −usb_cam ros−in digo −image−view

B How to use Odi

B-1 Connection to the robot Odi emits a wifi network with the SSID kemar_wifi.
Once connected to it, the IP parameters must be specified manually (no DHCP server is
installed on Odi):

• IP adress: 192.168.11.XX (XX=between 2 and 255, with 100 excluded),
• Netmask: 255.255.255.0,
• Default gateway: 192.168.11.1

ROS also requires the following environmental variables to be set:

• ROS_HOSTNAME=192.168.1.XX (XX= the value set above),
• ROS_MASTER_URI=http://192.168.11.100:11311,
• ROS_IP=192.168.1.XX (XX= the value set before).

On the robot, modify the file /etc/hosts by adding suitable IP address and hostname.
On the local computer, the same can be done, by adding the line
1 9 2 . 1 6 8 . 1 . 1 0 0 kemar_base

in the local file /etc/hosts.

B-2 Install the OdiROS packages on the client Odi is shipped with a CD containing
an archive file src-kemar.tar.gz. Once ROS is installed on the local machine (see the
Two!Ears documentation online to have more information on how to do that), extract
the archive inside the workspace/src ROS environment (usually the ~/catkin_ws folder).
Then, install the following ROS packages:
> sudo apt−ge t i n s t a l l ros−in digo −roboteq −∗ ros−in digo −jo y

and execute catkin_make inside the workspace/src ROS environment folder. Note that
the following line must be commented in the file kemar_base.launch before actually using
it (see below):
<i n c l u d e f i l e =" $ ( f i n d kemar_robot )/ launch / invert_odom . launch "/>
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B-3 Move the robot First, the user must be connected to the robot via SSH. Once
logged in, launch roscore, the OdiROS node kemar_robot and execute the startup script
kemar_drive.launch:
> r o s l a u n c h kemar_robot kemar_drive . launch

The robot can now be controlled from the keyboard on the client by launching:
> r o s l a u n c h kemar_teleop kemar_keyboard . launch

An xbox controller can also be used to move the robot. The user then must first setup the
controller:
> sudo apt−ge t i n s t a l l ros−in dig o −jo y

Then, the xbox controller must be connected through USB, and the command ls
/dev/input must be invoked to find the controller device ID (look for jsX, where X
is the controller ID number). To access the device, type:
> sudo chmod a+rw / dev / input / jsX

To test if the controller is correctly recognized by the system, use the jstest tool which
should display each pressed button:
> sudo j t e s t / dev / input / jsX

One can now launch the ROS node interface with the xbox controller:
> rosparam s e t joy_node / dev " / dev / input / jsX "
> r os r u n j oy joy_node

The key pressed captured by ROS can be seen with:
> r o s t o p i c echo joy

B-4 How to create a navigation map On the client, install the following ROS pack-
age:
> sudo apt−ge t i n s t a l l ros−in dig o −map−s e r v e r

Then, on the robot, turn on the motors and the LIDAR:
> r o s l a u n c h kemar_robot kemar_driver . launch
> r o s l a u n c h kemar_robot kemar_base . launch

On the client, launch the following command:
> r o s l a u n c h kemar_navigation gmapping . launch

The robot can now be moved freely in the environment, by using the keyboard or the xbox
controller. The map automatically created by the system can be visualized on the client
by using:
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> ro s r u n r v i z r v i z

The GUI can be used to select the topic /map. Once the entire environment is explored,
the map can be saved with
> ro s r u n map_server map_saver −f f i l e n a m e

B-5 Navigation On the robot, the filename of the map obtained previously must be
indicated by editing the content of the file move_base_digitalarti.launch. It can also
be passed as an argument to each command. Then, the motors, LIDAR and the map
computations can be turned on with:
> r o s l a u n c h kemar_robot kemar_drive . launch
> r o s l a u n c h kemar_robot kemar_base . launch
> r o s l a u n c h navigat ion_seb m o v e _ b a s e _ d i g i t a l a r t i . launch
> r o s l a u n c h navigat ion_seb s e r v e r _ l o c a l i s a t i o n . launch

On the client, launch:
> r o s l a u n c h navigat ion_seb view_navigation . launch

A GUI opens (see Figure 7.5), on which the robot position can be initialized by clicking
on the “2D pose estimation” button, and then by clicking on the approximate position of
the robot in the map. Proceed by clicking on the "2D Nav Goal" button, and by clicking
on the position to be reached by the robot.

Figure 7.5: GUI interface showing the map and the robot navigating inside.
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7.2 Assembly instructions for a motorized KEMAR HATS

7.2.1 Mechanical assembly

By default, the KEMAR Head-And-Torso Simulator has a movable neck that requires
manual operations. For the Two!Ears project we have proposed to motorize the neck.
The mechanical link between head and torso has been modified, preserving neck thickness
and shape. The held solution is composed by three aluminium pieces (Figure 7.6). The me-
chanical design is available as open-source files. The steps to complete in order to assemble
the mechanical components of the new neck are the following.

1. Remove the original part below the head and place the new one (blue colored on
Figure 7.6). Keep and reuse the same screws. Once fixed, an anti-reflection adhesive
film must be stuck to prevent any reflection from the proximity optical sensors below.
The two audio cables can be passed through the arc-shaped hole (Figure 7.7).

2. Remove the original black piece fixed on top of the torso (the one with angular
marks). Keep the screws.

3. Assemble the motor and the new aluminium part (red colored in Figure 7.6) with
four M4 screws. Consider the arc-shaped hole as the rear of the new neck.

4. Place the two proximity optical sensors (VTF180 from Sick) into the dedicated holes
(one on front, the second on left side). The nuts provided with the sensors are too
big to be placed direcly. Nuts must be rounded first to be integrated.

5. Place two plastic screws for head alignment, then position the last element on the
motor shaft. There is a groove on the shaft. Align the two hexagonal screws with
the groove and fix them (green colored on Figure 7.6).

6. Before placing the motor block set at the top of the torso, optical sensor sensitivity
must be adjusted on both sensors. Place the head and supply the sensors with
+24VDC. Check that output sensors toggle when the head turns, otherwise tune
the yellow screw on sensors to adjust. Then remove the head.

7. Place the motor block set at the top of torso and screw it (Figure 7.8).

8. Pass the audio cables into the torso, place the head on the neck and screw it.

7.2.2 Electonics assembly

In order to control the KEMAR head some components are necessary:

• 100W brushless DC motor (SA01ACN-8 2) with gearhead (PGE12/1 i=9 );

2 http://www.a2v.fr/program/sa01acn.htm
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Figure 7.6: KEMAR side cut. From top to bottom: Blue part is screwed below the head. Green
part is inserted on the motor shaft. Red part is screwed on the torso. Motor and gearhead (in
black) are vertically screwed with four M4 screws.

Figure 7.7: KEMAR’s head back sight. New
mechanical part is fixed and anti-reflection adhe-
sive film is stuck. The red audio cables are also
visible.

Figure 7.8: KEMAR’s torso with new mechan-
ical devices. The two orthogonal sensors (red
lights) are visible in the foreground. In the back-
ground the red audio cables coming from head.
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• Servo controller (ELMO Harmonica HAR5/60C 3);

• Encoder cable for Harmonica (CBLIC-BAS-J3 );

• Power distribution cable (IA1507/2M );

• Auxiliary +24VDC cable for Harmonica (CBLIC-BAS-J4 );

• Two proximity optical sensors (VTF180-2N41112 from Sick4).

A Assembly of the limit detector PCB

The PCB is a 2 layers stack made from standard FR4 substrate. The aim of this board is
to connect the proximity optical sensors and compute simple logic to detect left & right
limits (see equations7.1 and 7.2):

Right Limit Detection = Front Sensor + Side Sensor (7.1)

Left Limit Detection = Front Sensor + Side Sensor (7.2)

The components listed in Table 7.1 are necessary to assemble the PCB. Components
references are identified on PCB silkscreen. Gerber files are provided as open-source
files.

B Connecting the ELMO Harmonica Controller

Before switching the power supply ON, be sure to have connected all the
listed elements.

1. Connect the ELMO Controller (J3 connector) and the motor block set (incremental
encoder + Hall effect sensors) using cable CBLIC-BAS-J3.

2. Connect limit detection PCB (J6 connector) to ELMO Controller (J5 connector).

• J6.1 ←→ +24VDC power supply,

• J6.2 ←→ Power supply return,

• J6.3 ←→ J5.6 (ELMO Programmable input 6),

• J6.4 ←→ J5.8 (ELMO Programmable input return),

• J6.5 ←→ J5.5 (ELMO Programmable input 5),

3 http://www.elmomc.com/products/harmonica-main.htm
4 https://www.sick.com/us/en/photoelectric-sensors/photoelectric-sensors/v180-2/vtf180-

2n41112/p/p226906
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Item Qty Ref Designator RS Ref Farnell Ref Mouser Ref

1 1 C1 Capacitor, X7R,
100nF, 50V 852-3273 1469310 594-

K104K15X7RF53L2

2 3 D1, D2, D3 Zener Diode, 15V,
1/2W- 1N5245 805-0189 1612374 512-1N5245BTR

3 1 J3

Pluggable Termi-
nal Blocks, 8Pos,
3.81mm pitch,
Through Hole
Header

220-4888 3913120 651-1803484

4 1 J6

Pluggable Termi-
nal Blocks, 6Pos,
3.81mm, pitch
Through Hole
Header

220-4872 3913119 651-1803468

5 2 J4, J5 3Pos Vertical Pin
Header 745-7068 855-M20-9990346

6 2 M2, M3
MOSFET N-
Channel, 60V,
0.2A- 2N7000

214-1276 9845178 512-2N7000

7 4 R2, R4, R9,
R10

Resistor, 1/4W, 1%,
10kΩ 9341110

8 1 R11 Resistor, 1/4W, 1%,
470Ω 9339531

9 2 R12, R13 Resistor, 1/4W, 1%,
1kΩ 1457967

10 2 R16, R17 Resistor, 1W, 10kΩ 214-1276 279-ROX1S10K

11 1 U1
CMOS Quad 2-
Input NOR Gate -
CD4001B

662-9483 1739899 595-CD4001UBE

Table 7.1: List of electronics components necessary for limit detection PCB

• J6.6 ←→ J5.7 (ELMO Programmable input return).

3. Connect the ELMO Controller (J4 connector) to an auxiliary +24VDC power
supply using cable CBLIC-BAS-J4. If an auxiliary power supply is not available
connect the cable to the +24VDC main power supply.

• J4.1 ←→ +24VDC auxiliary power supply,

• J4.2 ←→ Power supply return.

4. Connect the ELMO Controller (J1 -RJ-45 plug) to a RJ-45 to 9-pin D-sub adapter
using an ethernet cable. The 9-pin D-sub connector is normalized according to CAN
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protocol:

• J1.1 (CANH)←→ 9-pin D-sub, pin 7,

• J1.2 (CANL)←→ 9-pin D-sub, pin 2,

• J1.3 (CANGND)←→ 9-pin D-sub, pin 3.

Do not forget to solder a 120Ω termination resistor between pin 7 and pin 2 of 9-pin D-sub
adapter.

1. Connect the ELMO Controller (J8 connector), available on the side of the controller
to the motor phases and main power supply.

• J8.1 (VP+) ←→ +24VDC power supply,

• J8.2 (PR) ←→ Power supply return,

• J8.3 (PE) ←→ If available connect to protective earth,

• J8.4 (PE) ←→ motor protective earth (motor body),

• J8.5 (M1) ←→ motor phase 1,

• J8.6 (M2) ←→ motor phase 2,

• J8.7 (M3) ←→ motor phase 3.

There are no constraints in the pinning of M1, M2 and M3.

7.2.3 Connecting the limit detector PCB

J3 on limit detector PCB is the last connector to be affected:

• J3.1 ←→ L/D wire (white), lateral sensor,

• J3.2 ←→ Q (black), lateral sensor,

• J3.3 ←→ - (blue), lateral sensor,

• J3.4 ←→ + (brown), lateral sensor,

• J3.5 ←→ L/D wire (white), front sensor,

• J3.6 ←→ Q (black), front sensor,

• J3.7 ←→ - (blue), front sensor,

• J3.8 ←→ + (brown), front sensor.

Place jumpers on J4 and J5 connectors between GND and center pin.
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7 Appendix

A Connecting the IEPE supply modules M28

If MMF IEPE supply modules M28 5 are connected to audio microphones, the +24VDC
main power supply can also by used for this modules.

5 http://www.mmf.de/manual/m28mane.pdf
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