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1 Executive summary

The computational framework of auditory perception and experience developed
in Two!Ears is realized as a development software system primarily based on MATLAB .
The evaluation of the Two!Ears model for different scenarios implies a deployment system,
consisting in the interface of the development system with a robot. Work package WP5
aims at providing all the necessary ingredients to this deployment. To assess the active and
exploratory features of the computational model and its ability to handle multimodality,
robot platforms endowed with adequate mobility and multimodal sensor input must be
designed. So, three different configurations of increasing complexity are planned: first, a
binaural “head-on-a-stick” type system, that is, a head-and-torso simulator (HATS; used
model: KEMAR) endowed with rotational movements; then, this same HATS equipped with
stereovision; last, an implementation of this visio-auditive head on the PR2 mobile robot so
as to get translational degrees-of-freedom for long-range navigation. Besides, each test bed
must be accompanied by a comprehensive real time software architecture. This architecture
is typically composed of a low “functional” layer, where components—e.g., perception,
locomotion, navigation, etc.—must run concurrently under severe time and communication
constraints, together with a high “cognitive” layer, where decisional processes take place at
a higher level of abstraction. Extensive evaluations of each functional module are envisaged
before its integration into the deployment system and evaluation in the various scenarios
developed in WP1.

This deliverable documents the progress made during year 1 towards the definition of a
physical simplified platform and its associated software. On the basis of the GenoM3 1

generator of modules for the ROS 2 robotics middleware, a robotics architecture is advo-
cated which can host all the necessary functional components, written in C/C++ under
GNU/Linux . A so-called MATLAB bridge was developed so as to connect a range of
GenoM3 functional modules with different MATLAB modules developed in WPs 2-4,
thus linking the development and the deployment systems. A high-performance audio
stream server was implemented for binaural acquisition and time-stamped audio streaming

1 Generator of M odules v3, https://git.openrobots.org/projects/genom3/wiki/Wiki – This frame-
work is one of the core software component distributed within the open-source collection developed at
CNRS, as a result of two decades of research on real-time architectures for autonomous systems.

2 Robot Operating System, http://www.ros.org – This open-source meta-operating system has been
initiated by Willow Garage, and runs on the top of Linux.

1
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1 Executive summary

from any board compatible with ALSA (Advanced Linux Sound Architecture). Last, a
controllable azimuthal degree of freedom was added in the neck of a KEMAR HATS. It
entails an original mechanical setup, an actuator, sensors, and a specific GenoM3 module
for homing, servocontrol and time-stamped streaming of proprioceptive and audio data.
All these elements constitute a self-sufficient stable subset which enables the conduction of
experiments spanning multiple work packages. The design of the embedded stereovision
system is ongoing. The mounting of the head of the KEMAR HATS on a PR2 mobile
robot in the next project phases has been prepared by respective design work. In parallel,
the visual rendering of robotics environments and scenes has been realized in the MORSE 3

simulator, complementing the physical robot implementations. Therein, GenoM3/ROS
modules were developed to control a virtual HATS or PR2 and to stream/process images
from virtual cameras.

3 M odular OpenRobots S imulation Engine, https://www.openrobots.org/wiki/morse/ - This Blender
based versatile simulator enables realistic 3D simulation with one to tens of autonomous robots, and
can be integrated with several robotics middlewares, including ROS .

2
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2 Introduction

The main objective of WP5 is to integrate the whole set of modules from WPs 2–4 into a
physical test bed enabling the global evaluation of the Two!Ears computational framework
against the two applications constituting WP6. This implies the development of three test
beds: an anthropomorphic binaural head-and-torso simulator (HATS) endowed with an
azimuth degree-of-freedom on its neck; this same system complemented with stereovision;
the mounting of the binaural head of this HATS on a PR2 robot so as to offer translation
degrees-of-freedom and enable long-range motions. A comprehensive software modular
architecture comes with this hardware. Its lower functional layer is composed of components
which run concurrently under severe time constraints and communicate by control or data
flow in real time. Via a specific bridge, it is connected with the cognitive layer realized in
the development system. Therein, decisional processes take place, which handle symbolic
data and are less subject to time-critical constraints. Extensive “atomic” evaluations
of all developed parts must be performed—and their performance must be quantified
when possible—so as to ensure their satisfactory behavior when case studies are addressed
through the whole, integrated, deployment system.

2.1 Structure of the report and major achievements

WP5 is split into three tasks. However, for easier readability, the manuscript is not
organized along these. Rather, it is organized along the main achievements over the first
period, starting from software and going to hardware, with tests included all along the
sections.

Chapter 3 describes the proposedmodel-driven design of the robotics software archi-
tecture, based on the GenoM3 generator of modules and the underlying ROS middleware.
This architecture enables the concurrent execution of C/C++ “functional” modules under
severe time and communication constraints, and an upper “cognitive/decisional” layer
implemented in MATLAB .

Chapter 4 presents an ergonomic and optimized MATLAB bridge, which enables
multiple MATLAB decisional processes to be client of any set of GenoM3 functional
modules.

3



2 Introduction

Chapter 5 reports the achievement of a high-performance GenoM3 audio stream
server for acquisition and time-stamped streaming of binaural signals to any client in the
functional or cognitive layer.

Chapter 6 concerns the addition of a pan degree-of-freedom on the neck of the
KEMAR head-and-torso-simulator. This consists in: the mechanical setup; the mount-
ing of actuator and sensors; the drivers for homing, control, and time-stamped propri-
oception; the encapsulation into a GenoM3 module of all these functions, as well as
time-stamped streaming of binaural signals.

Chapter 7 summarizes the work done towards GenoM3/ROS modules for the control
of virtual robots and video streaming from virtual cameras in the MORSE
simulator, so as to test the concepts of the cognitive layer from WP3-WP4 in synthetic
environments in parallel to the development of the physical test bed.

Last, Chapter 8 summarizes the ongoing work and short-term prospects.

Appendix 9 concludes the report.

2.2 Structure of the report vs Tasks Decomposition

The first task of WP5, Task 5.1 — Test bed: Robot platform and integrated
audio/audiovisual sensors was supposed to address four main issues during the period.
These are:

Design of an anthropomorphic binaural head mounted on a pan-tilt unit This subtask has
been completed with changes. Instead of mounting a head on a pan-tilt unit, the
KEMAR HATS has been endowed a with an azimuthal degree-of-freedom. This is
argued and explained in Chapter 6.

Binaural head with stereoscopic vision This is in progress, but introduces no delay in the
project. This is overviewed in Chapter 8.

Data acquisition and processing, to compute high-quality low-level audio or visual cues
This has been completed for the KEMAR HATS within the GenoM3 architecture, as
explained in Chapter 6. The application of the project also mentions the development
of a “System-on-a-programmable-chip” based integrated audio/audiovisual sensor,
embedding processor-based system on a FPGA combined with application-specific
hardwired modules, for the binaural PR2 robot. A decision on this point will be
taken in year 2, with no induced delay on the project.

Less capable but more transportable HATS-based system The foreseen contribution from

4



2.3 Licensed code

RPI on this point has been shifted to years 2 and 3, since the planned matching
grants did not arrive on time for the first year of Two!Ears.

The second task of WP5, Task 5.2 — Software architecture of the Two!Ears
framework addresses the design of a modular software architecture underlying the im-
plementation of the Two!Ears computational framework, on the basis of a “functional”
(low) and “decisional/cognitive” (high) layer, with adequates bridges in between. As
mentioned before, a stable self-sufficient subset has been completed, which enables ex-
periments transversal to several WPs. The relative developments constitute Chapters 3
to 6.

Last, as aforementioned, the work on Task 5.3 — Modular tests and evaluations, is
not gathered into a separate section, but comes with the corresponding developments into
the different chapters.

2.3 Licensed code

The TWO!EARS project follows the approach of reproducible research. So far, all the
software components from this WP are under the BSD-3 Clause License, which can be
viewed in Appendix 9.1. This licence allows to freely reuse the software material, provided
that it appears in any redistribution form. The software introduced in this deliverable is
available on the following Two!Ears repositories:
genomix matlab bridge:

https://dev.qu.tu-berlin.de/projects/twoears-matlab-genomix-bridge/repository;
audio stream server :

https://dev.qu.tu-berlin.de/projects/twoears-audio-stream-server/repository;
KEMAR motorization:

https://dev.qu.tu-berlin.de/projects/twoears-kemar-control-genom-module/repository;
KEMAR motorization with audio stream server :

https://dev.qu.tu-berlin.de/projects/twoears-kemar-genom-module/repository;
control of virtual KEMAR in MORSE :

https://dev.qu.tu-berlin.de/projects/twoears-morse-genom3-kemar/repository;
control of virtual PR2 in MORSE :

https://dev.qu.tu-berlin.de/projects/twoears-morse-genom3-pr2/repository.

2.4 An introduction to the robotics test beds

This section briefly introduces the platforms used in Two!Ears (Figure 2.1).

5
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2 Introduction

Figure 2.1: The KEMAR head-and-torso-simulator (HATS) and the PR2 robot.

The KEMAR head-and-torso-simulator The KEMAR (Knowles E lectronics M anikin
for Acoustic Research) head-and-torso-simulator (HATS) is one of the most widespread
acoustic simulators enabling human-like binaural acquisition. This anthropomorphic
manikin is intented to reproduce the scattering and reflections undergone by acoustic waves
on human upper bodies. It enables reproducible measurements, and is widely used to
establish the performance of hearing aids and other electroacoustic devices, or to assess the
quality of binaural recordings. It is based on worldwide average human male and female
head and torso dimensions and meets the requirements of ANSI S3.36/ASA58-1985 and
IEC 60959:1990.

The first version of this HATS dates back to 1972. The last versions (e.g., the Type
45BB-2 used in the project) is built with a plastic composite that provides a more user
friendly and ruggedized construction. It includes two ears, which can be selected from six
different types, and come in a “Small” or “Large” size with two different shore hardnesses.
The ears can be accurately positioned and easily dismantled for ear-canal exchange or
calibration. The interior of the head can be easily accessed. The neck angle can be
selected manually, locked at three predefined positions, and identified thanks to a visual
marker.

In the framework of Two!Ears, it has been decided to endow the neck of the KEMAR
HATS with a homemade controllable azimuth/pan degree-of-freedom. This way, exper-
iments can be conducted which entail the actuation of this degree-of-freedom, such as
exploratory movements, small motions for front-back disambiguation, etc. The visual

6



2.4 An introduction to the robotics test beds

modality will be added in year 2, on the basis of a stereoscopic sensor.

The PR2 mobile robot PR2 is a mobile dual-arm manipulator from Willow Garage1.

The PR2 is a mobile robot built by Willow Garage to serve as a testbed for robotics research.
It is endowed with two arms, with wrists and grippers; each of them has four, three and
one degrees-of-freedom. The head can pan 350◦ and tilt 115◦.

PR2 includes several types of sensors such as a Microsoft Kinect, a 5-Megapixel color
camera as well as a Wide-Angle Color and a Narrow-Angle Monochrome camera on its head.
It also embeds a Hokuyo UTM-30LX Laser Scanner on the base. On each forearm there is
one Global Shutter Ethernet Camera and on each gripper there is a three-axis accelerometer
and a fingertip pressure sensor array. The robot is endowed with two Quad-Core i7 Xeon
processors, 24GB RAM, a removable 1.5TB hard drive and an internal 500GB hard drive.
It is also equipped with an ethernet connection, wifi, a dedicated service access point and
a bluetooth access point.

PR2 is undoubtedly the emblematic robot based on the ROS middleware. The open-
sourcing of ROS code boosted the robotics research community to freely distribute modules.
There is also a wide community exchanging information from the most basic things to
the more advanced knowledge on the PR2 , including troubleshooting. Many universi-
ties/research laboratories and known companies own a PR2 for their research, such as
CNRS , UPMC , Berkeley University, MIT, Samsung or Bosch to name a few. In total,
there are 34 different institutions in more than 12 countries.

The head of the KEMAR HATS will be mounted on this mobile robot, so as to provide
additional translational degrees of freedom for large-scale exploration.

1 https://www.willowgarage.com/pages/pr2/overview.

7
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3 Overview of the robotics software
architecture

An important objective of Two!Ears is the translation of the whole conceptual framework
into a comprehensive robotics software architecture. This so-called “deployment” archi-
tecture is a necessary element to tackle the case studies of WP6. The present chapter
first describes the needed step to bridge the gap between the Two!Ears conceptual
framework and the deployment software at an abstract level, and then explains why and
how the generator of functional modules GenoM3 and the underlying middleware ROS
can constitute a sound implementation framework.

3.1 From the Two!Ears conceptual framework to the
deployment architecture

Though several approaches to robotics architectures exist, the benefits brought by a modular
layered organization are widely acknowledged. From a robotics viewpoint, two basic layers
can be exhibited in the Two!Ears deployment system. The functional layer is composed
of modules which are subject to severe time constraints, for instance to achieve real time
performance. These components must be able to communicate efficiently with each other,
through control and data flows. They are in charge of sensorimotor functions, such as loco-
motion, proprioceptive or exteroceptive data acquisition and processing, obstacle avoidance,
reactive navigation, localization, or even simultaneous localization and mapping (SLAM).
As many components are in interaction with the environment, several local perception-action
or perception-decision-action loops take place in this layer. Typical issues are components
reusability, formal proofs of dependability and scalability.

Higher in the architecture, the decisional/cognitive layer hosts deliberation primitives. As
argued in Ingrand and Ghallab (2015, in press), deliberation—which refers to purposeful,
chosen or planned actions—is critical for robot autonomy against variable environments.
Among the ingredients of deliberation in robotics, one can cite learning, goal reasoning,
task planning, deliberate action, perception (which bottom-up as well as top-down) and
monitoring. These abilities take place at a more abstract level, under lighter time constraints.
An example of a general robotics architecture is shown on Figure 3.1.
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3 Overview of the robotics software architecture

Figure 3.1: Example of a robotics architecture.

Figure 3.2: The Two!Ears conceptual framework (right) vs its implementation as a robotics
architecture (left).
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3.2 ROS and GenoM3

The Two!Ears conceptual framework involves functions for robot locomotion, streaming
of binaural signals, as well as SLAM. In view of the above, these functions come within
the functional layer, and must be implemented into a high level language such as C or
C++. Conversely, the cognitive part of WP3 straightly takes place within the deliberative
layer. Quite uncommonly in comparison with robotics, the corresponding abilities are
implemented in MATLAB . A MATLAB bridge, to be introduced later in this report,
bridges these two extremal sets of primitives (Figure 3.2). Between them, several functions
take place, such as the monaural and binaural processing stages from WP2 and the “lower”
part of WP3 which includes low-level visual processing. In a first phase, these functions
will constitute an intermediate layer. To run first integrated experiments, their currently
available implementation will be used, namely MATLAB code for WP2 and C code for
visual processing. Whether or not they will belong to the functional layer will be decided
during year 2.

3.2 ROS and GenoM3

3.2.1 Basics

In the robotics community, GNU/Linux is by far the most common operating system,
the Ubuntu distribution in particular. As aforementioned, components of the functional
layer of a robotic software architecture have to deal with critical computing issues and
timing constraints. Many middlewares are available off-the-shelf to run in between and
take in charge their control and mutual communication/synchronization. Among them,
ROS 1 from Willow Garage is undoubtedly the most widespread. ROS is open-source
and runs on GNU/Linux . It benefits from a large community of developers, which gives
access to a large choice of components in various domains. The PR2 robot, which will
constitute the most versatile test bed to assess the Two!Ears conceptual architecture
against case studies, runs ROS . For all these reasons, ROS has been selected. Sadly, some
heavy constraints remain between the releases of ROS , the maturity of some basic related
modules (e.g., navigation, visual processing) and the underlying versions of Ubuntu, but
they are not detailed here.

GenoM3 is one of the core softwares distributed within the OpenRobots open-source
collection developed at CNRS. It comes as a result of two decades of research on real time
architectures for autonomous systems2 (Alami et al., 1998)(Mallet et al., 2010). It was
decided to use ROS through GenoM3 , because this significantly improves the encapsulation

1 Robot Operating System, http://www.ros.org.
2 Generator of M odules v3, https://git.openrobots.org/projects/genom3/wiki/Wiki (with included

documentation).
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3 Overview of the robotics software architecture

of almost every kind of algorithm (periodic or aperiodic, synchronous or asynchronous,
interruptible or not,. . . ) into modules that can run several tasks in parallel and handle
failures in a clean way. The GenoM3 framework is middleware-independent and goes
beyond by enforcing a clear internal organization of components, which helps preventing
unsustainable design choices. The design of a module follows a model-driven approach in
two steps:

1. First, the provided functionalities are described in a single specification file, the .gen
file. This file defines the services provided by the module, the corresponding internal
user-defined automata, as well as the module ports for data exchange with other
components of the architecture.

2. On the basis of the .gen specification, GenoM3 automatically generates the real
time code related to the architecture of the module, and as well as a skeleton for the
embedding of the code elements (or codels) of the algorithmic core. Once these codels
are implemented (typically in C or C++) together with related external libraries,
the module is ready to be built.

Thus, a GenoM3 module can be generated for distinct middlewares without changing a line
of code, as the .gen file and codels stay unmodified. Though GenoM3 imposes a learning
phase and strict guidelines to the user, its benefits are many: a clear specification of each
component of the architecture in an associated file; a better organization of the code of each
service thanks to the specification of its internal automaton; an easier reusability of the
user algorithmic core; its decoupling of the underlying architecture; enhanced robustness
thanks to the sharing of non-user code. Though not used in Two!Ears, GenoM3 can also
be coupled with formal validation and verification tools3.

3.2.2 Specification of a GenoM3 module

The .gen file is written in a language called dotgen, close to IDL4 (which can be used
for syntax coloration in text editors). The main elements it can contain are listed be-
low:

IDS stands for the Internal Data Structure of a module. It gathers the data shared by all
its codels.

Services are the functionalities offered by the module. They are defined with one of the
following keywords:

3 BIP/D-Finder for instance, http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.
html.

4 Interactive Data Language.
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3.2 ROS and GenoM3

function A function is a simple, single-step service (e.g., function returning the sum
of two integers). It is coded into a single codel.

activity An activity is a more complex service defined as a finite state machine, each
state of which is associated to a codel. There is at least a start codel which is
the entering point of the state machine. If a stop codel is declared, then it is
executed at the end of the activity, even if this happens prematurely (e.g., if
the activity is interrupted by another service, or if the module is killed while
the activity is running). As an activity runs within a task, see below.

attribute An attribute is a service used to get or set parameters of the module, stored
in the IDS.

Tasks Each module entails one or several tasks, each of which can be assimilated to a
thread. Tasks can execute codels which are global to the module (e.g., to be executed
on a periodic basis), as well as codels which implement the associated activities.
Tasks can have parameters such as period, priority, etc. Importantly, codels of a
module are unbreakable from within GenoM3 : if an interrupting event occurs, then
the running codel is entirely executed by the task in charge of it before the activity
stops.

Ports implement data communication from the module to the outside (out port), or the
other way round (in port).

The .gen file can be completed with .idl files, commonly used to define data structures
likely to be shared between GenoM3 modules.

3.2.3 Blocking or non-blocking calls to services

A service can be called along two opposite ways:

Blocking A blocking service is waited to be done before the calling routine continues. This
is the case of an activity which takes time to complete, and whose output is expected.

Nonblocking A nonblocking service keeps running while the calling routine requests other
services, process other data, etc. Its output can be retrieved by its client once it is
done, through its (scalar) ID.

3.2.4 Access of a running module

Prior to the execution of a GenoM3 component, the corresponding middleware it was
compiled for must be running. Once they are both launched, a client is needed in order to

13



3 Overview of the robotics software architecture

access the services and ports provided by the module. There are different ways to get a
client of GenoM3 modules. These are described below.

The native and generic C client libraries

When a GenoM3 component is built, C functions are generated in order to access its services
and read its ports. These constitute the so-called native C client library of the module. On
their basis, it is easy to program an executable client to the module.

GenoM3 also provides a generic C client library, which is made of more general functions
so as to send requests to any module or to get information from any port of any module.
Internally, data are encapsulated into JSON objects5.

The genomix server and the Tcl client

The genomix HTTP server is a generic interface between one or several clients and any
number of GenoM3 components. Clients can access components by sending specific HTTP
GET requests to genomix . The contents of these input requests from its clients is forwarded
by genomix to its GenoM3 server modules. Similarly, genomix forwards the replies from
its GenoM3 server modules to its clients. Data can also be relayed by genomix using JSON
objects: from its clients to the in ports of its GenoM3 server modules, as well as from the
out ports of its GenoM3 server modules to its clients6.

A Tcl7 client of genomix is part of the GenoM3 distribution. It provides a Tcl command
line interpreter as a client of genomix . In other words, genomix is a server to this Tcl
interpreter and a client for the GenoM3 components (Figure 3.3).

3.2.5 A toy example

Section 9.3.2 describes the specification and the implementation of a simple module that
increments a counter on a regular time basis, and of another module that connects to
the first one so as to display the value of the counter. This helps to understand the
fundamentals of GenoM3 , the dotgen language, and the GenoM3 workflow, with features
such as:

5 JavaScript Object Notation, http://json.org/
6 Data encapsulation into JSON objects is performed inside the clients and GenoM3 server modules of

genomix . The communication between genomix and its server modules uses internally (and transparently
to the user) the aforementioned generic C client library.

7 Tool Command Language.
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3.3 Installation instructions for ROS and GenoM3

• declaring in and out ports and connecting them;

• declaring activities with codels defining a state-machine;

• declaring tasks with an initialization codel;

• using the module’s internal memory to store data and define attributes;

• using validation codels to control the input of services.

3.3 Installation instructions for ROS and GenoM3

An easy procedure for the installation of the software supporting the Two!Ears deployment
architecture is provided in Appendix 9.2.
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Figure 3.3: Example of an architecture using genomix with two Tcl clients.
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4 The MATLAB bridge to GenoM3
modules

4.1 Overview of a MATLAB client

Many aspects of the Two!Ears architecture are implemented in MATLAB . This is
the case for the decisional level, which takes autonomous decisions based on processed
descriptors. On the other hand, robotic components such as the rotation control of the
head and the acquisition of audio data from microphones are programmed in GenoM3 ,
as they are part of the functional level, in charge of action and sensory input acquisition.
The exact frontier between MATLAB and GenoM3 will be fine tuned in the second year
of the project.

Some functions can be implemented either in GenoM3 or MATLAB . If they are coded
in GenoM3 , then MATLAB needs to get access to the descriptors they produce. If
they are coded in MATLAB , then MATLAB must get the raw sensory data. In both
cases, MATLAB must communicate with GenoM3 . This is the reason why a signif-
icant effort has been spent on the development of a bridge between MATLAB and
GenoM3 .

The expected key features for this bridge can be summarized as follows.

• Any set of GenoM3 modules must be reachable from MATLAB . This implies

– the call of GenoM3 modules services from MATLAB , either in a blocking or
non-blocking way;

– the access to ports of GenoM3 modules from MATLAB , and the storage of the
published data into MATLAB structures.

• Several MATLAB processes should possibly be clients of the same GenoM3 module.

• MATLAB processes and GenoM3 modules should be allowed to run on different
computers, connected to a TCP/IP network.
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4.2 Admissible solutions

Three solutions may be envisaged: the use of a native ROS -MATLAB bridge, by exploiting
the fact that ultimately, in our specific context, GenoM3 generates ROS code; the use of
the GenoM3 generic C client library (Section 3.2.4); the access to GenoM3 components
from MATLAB through the genomix server (Section 3.2.4).

4.2.1 Use of a native ROS -MATLAB bridge

As the ROS middleware has been selected for the project, an option would be to rely on
a native ROS -MATLAB bridge. The official ROS I/O package1 exists for this purpose.
However, its use would break the benefits brought by the aforementioned middleware
independence of GenoM3 . More importantly, this would require for the MATLAB user who
wants to control a GenoM3 module on the basis of its .gen file, to learn how this specification
has been translated into ROS nodes with ROS topics, services and actions. Last, the ROS
I/O package was tried at one point of the project to compare performances, but turned
out to be somewhat instable and to provide poor flexibility.

4.2.2 Use of the GenoM3 generic C client library

The most efficient way to communicate with GenoM3 modules is probably through the
GenoM3 generic C client library, which is fast and very robust. On the basis of this
library, a standalone C client can be developed and further encapsulated into MATLAB
MEX files2. This option was considered for the toy example mentioned in Appendix 9.3.2,
and its related standalone C client described in Appendix 9.4. This raised deep is-
sues:

• GenoM3 returns asynchronous events, for instance when services end. Handling
them requires to get into the MATLAB event loop. This kind of real-time constraint
is not officially featured in MATLAB . It would take a lot of effort (and probably a
bit of “hacking”) to come up with a solution, without any guarantee of success.

• The dynamic libraries related to any server module to be accessed have to be opened
from within the client. This gets complicated if the server module and MATLAB
run on separate computers.

• MATLAB uses its own set of C libraries, some of which are not compatible with those

1 http://www.mathworks.com/hardware-support/robot-operating-system.html
2 http://www.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html
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4.2 Admissible solutions

used by ROS . This reaches, in some sense, the limit of the middleware independence
of GenoM3 , in that the generated executable component must ultimately rely on
libraries required by the middleware.

• Other unexpected behaviors were encountered at the MEX level, while underlying C
standalone client was working flawlessly.

4.2.3 Use of the genomix server (chosen solution)

As outlined in Section 3.2.4, the generic genomix server enables the control of GenoM3
modules by relaying HTTP requests from clients, the data transferred between genomix
and its clients or servers being encapsulated into JSON objects. In the same way as the
existing Tcl client enables the control of modules from a Tcl interpreter, a MATLAB
client of genomix can be envisaged. This is indeed possible thanks to the TCP/IP support
brought by the MATLABInstrument Control Toolbox 3, which eases the sending of HTTP
GET requests from a MATLAB client to genomix .

The following advantages and drawbacks appear.

+ GenoM3 is used as it was meant to, and the middleware independance is kept.

+ The Instrument Control Toolbox offers tools for asynchronous communication, what
solves the issue of handling GenoM3 events (Section 4.3.2).

+ The dynamic libraries related to the GenoM3 modules are handled by genomix , so
MATLAB does not need to access them.

+ Only official MATLAB features are used, which reduces the risk on the project.

− genomix is an additional process between MATLAB and GenoM3 modules. Although
genomix is remarkably optimized, this brings a little overhead.

− All the data relayed by genomix between its clients and its servers are encoded into
JSON objects. This is actually interesting for structuring these data. However, when
it comes to raw binary data, such as audio streams published on the out port of a
module, this raises two issues:

1. The size of the data (in bytes) is increased when encapsulated into a JSON
object. On the one hand, extra characters, such as brackets and quotes, are
inserted. On the other hand, sending a number takes as many bytes as there are
digits in its decimal encoding, as each digit is sent as an individual character.

3 http://www.mathworks.com/products/instrument/supported/tcp-ip.html

19

http://www.mathworks.com/products/instrument/supported/tcp-ip.html


4 The MATLAB bridge to GenoM3 modules

2. JSON objects need to be parsed so as to store them into MATLAB structures.
This can take a significant time for big arrays.

In view of the above, this solution was chosen, and has led to the development of a so-called
genomix matlab bridge (Figure 4.1). The detailed implementation follows.

4.3 Implementation of the genomix matlab bridge

4.3.1 genomix HTTP GET requests

When connecting to genomix , the client opens two sockets:

1. The first socket is used to start a session4, with the request get /session/start?s=.
This socket is then used to call services and read ports, and returns an HTTP content
of type application/json. First socket will henceforth be referred to under the
term main socket .

2. The second socket is used to receive asynchronous events sent by modules. Listening
on this socket is made with the request get /session/listen?s=..., returning an
HTTP content of type text/event-stream, which is the way to get events from
an HTML5 server. This is the only GET request sent on this socket , once at the
beginning. This second socket will be referred to under the term events socket .

Table 4.1 lists the GET requests that the genomix matlab bridge uses to communicate
with genomix .

4.3.2 MATLAB aspects of the solution

Using TCP/IP objects in MATLAB

The aforementioned Instrument Control Toolbox allows to create TCP/IP objects in
MATLAB . The genomix matlab bridge creates two distinct TCP/IP objects, one per
socket . On the events socket , the major issue was to know how to process the data as soon
as it arrives, because it is sent asynchronously. In MATLAB , the BytesAvailableFcn
field of a TCP/IP object allows to assign a callback function to be executed everytime
new data arrives on the socket . The main socket does not have this feature as it works in

4 A session is a user defined context to which sent requests can be attached.
cf. https://git.openrobots.org/projects/genomix/gollum/protocol/sessions
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Figure 4.1: The genomix matlab bridge (GMB) in the software architecture.

Description Request Reply content
main socket

Start a session get /session/start?s= sss
Load a module get /load/mmm ?s=sss &argv= mmm
Get module infos (cf. Section 4.3.3) get /module/mmm /info?s=sss <JSON info>
Call a service get /module/mmm /send/aaa ?s=sss &input=iii rrr
Clean a request ID (cf. Section 9.3.1) get /module/mmm /clean/rrr ?s=sss <nothing>
Read a port get /module/mmm /read/ppp ?s=sss <JSON data>

events socket
Listen to events get /session/listen?s=sss <events data>

Variable Meaning Example
sss session s1
mmm module demo
aaa service GotoPosition
iii service input in JSON format {“posRef”:1}
rrr request ID 0
ppp port Mobile

Table 4.1: GET requests supported by genomix

a synchronous way: for every GET request sent on this socket , a reply from the server
is waited for before continuing. The main socket has another property: as it is used to
read ports, the size of received data can be very large, e.g., when accessing a port which
publishes raw audio data. Nevertheless, the InputBufferSize field of a TCP/IP object in
MATLAB allows to set the maximum size of received messages on the socket to a value
big enough for our needs.
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Dealing with JSON objects in MATLAB

genomix encapsulates data into JSON objects. Therefore, a JSON parser in MATLAB
is needed to convert the JSON objects into MATLAB structures. It was decided to use
jsonlab5, a free and open-source implementation of JSON encoding and decoding written
in native MATLAB .

Although jsonlab was suitable for most of the manipulations on JSON objects required in
the genomix matlab bridge, it showed a few efficiency limitations when trying to parse very
large JSON objects from a port publishing raw audio data. This is why it was decided
to write a custom parsing function just for the specific case of reading audio data from
the corresponding GenoM3 module (Chapter 5). The bridge would then allow the choice
between jsonlab or this custom parsing function when reading ports. The custom function
benefits from the fact that we have prior knowledge of how the data is organized in the
JSON object and can write a parsing algorithm optimized for this particular case. It was
eventually decided to encapsulate it into a MEX file, with good performance improvement
(Section 5.3.4).

The GenoM global variable

The genomix matlab bridge needs to store some objects shared by its functions into memory,
in particular the TCP/IP objects for the communication with genomix and the outputs of
services that arrive on the events socket . These objects were chosen to be stored into a
single global variable, called GenoM. The use of a global variable fits well this current case,
as data received asynchronously on the events socket needs to be saved. Moreover, this
turns out to be quite convenient for debugging purposes: by adding the global variable to
the MATLAB workspace, it is easy to see the state of the bridge.

4.3.3 Releases

Two releases of the genomix matlab bridge were designed. The first one provided all the
needed features:

• a function to connect to the genomix server and one to disconnect;

• a function to load any module and one to close any opened module;

• a function to call a module’s service, in blocking or non-blocking mode;

5 Website: http://iso2mesh.sourceforge.net/cgi-bin/index.cgi?jsonlab
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• a function to get the result of a non-blocking request;

• a function to read a module’s port, with the possibility to provide an optional parsing
function for efficiency.

In comparison to the Tcl client, the resulting design of the MATLAB client was missing
a nice feature: automatic completion. When loading a module in the Tcl client, spe-
cific commands for the module are created. This is made possible thanks to the get
/module/mmm /info request sent on the main socket : it returns a JSON object describing
all the services and ports provided by the module, along with information about inputs
and outputs of the services, and data types published on the ports. It was decided to
develop a second release using this GET request so as to get the same kind of automatic
completion in MATLAB .

Automatic completion in the MATLAB command window is possible for functions known
by MATLAB . The idea was consequently to automatically generate MATLAB functions,
based on the information returned by the GET info request.6

Following is an example using the demo module to show the improvement brought by the
second release. The demo module, provided in the GenoM3 distribution and intended to
be a first example for new GenoM3 developers, was employed for testing purposes when
developing the genomix matlab bridge. It provides services for the control of a virtual
robot moving forward or backward on a line, at a speed chosen by the user. In particular,
a service named GotoPosition allows the user to move the robot to a position reference,
given as input parameter of the service.

• In v1.0, a call to the GotoPosition service of the demo module with an input
parameter posRef equal to 1, was made like this:

>> GMB_callModuleService('demo', 'GotoPosition', struct('posRef',1));

• In v2.0, with the corresponding generated function, it becomes:

>> GMB_demo_GotoPosition(1);

GMB_demo_GotoPosition is a native function automatically generated by the genomix
matlab bridge when the demo module is loaded. As this function is then known by
MATLAB , its automatic completion is enabled (Figure 4.2-left). An important remark can
be made concerning the input parameter posRef: in v1.0, the user needed to provide the
name of the input parameter, which required to have a look at the .gen file of the module
to know its name. In v2.0, the name of the input parameter is retrieved thanks to the

6 Functions known by MATLAB are functions in the MATLAB path. It was then necessary to put the
generated functions in a folder that is added to the MATLAB path by the bridge.
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GET info request, and it is actually part of the prototype of the native function, so it also
appears when typing the funcion in MATLAB (Figure 4.2-right).

Figure 4.2: Left: Automatic completion in MATLAB with the demo module. Right: Suggestion
of the input arguments in MATLAB

Figure 4.3 shows a parallel between the Tcl client and the MATLABgenomix matlab bridge
v2.0 client we designed.

4.4 Timing concerns

One major concern of the genomix matlab bridge, during all its development process, has
been related to timing. One of the major features originally intended with the bridge was
to receive audio streams in real-time from a dedicated GenoM3 module. Therefore, it had
to be very efficient and minimize latency. Even though the final design for audio stream
does not use the genomix matlab bridge (but another approach exposed in Section 5.4),
communication latency was improved by the developers of GenoM3 at CNRS . Two main
updates of GenoM3 provide the bridge with optimized timing performances. These are
exposed below.

4.4.1 JSON serialization in GenoM3

When we started to work with genomix , our attempts to transfer large arrays of audio
data revealed an issue: retrieving 1 second of audio data (2 channels at 44100Hz, with
each sample encoded on 32 bits) was taking more than 1 minute. JSON serialization in
GenoM3 was improved to solve this issue. The serialization speed was reduced by a factor
of 807.

7 For more information, see the commit message:
https://git.openrobots.org/projects/genom3-ros/repository/revisions/a04e6142
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Tcl client | MATLAB client
********** | *************

# Connect to the genomix server and load the demo module.

eltclsh> genomix::connect | >> GMB_genomixConnect('127.0.0.1');
genomix1 |
eltclsh> genomix1 load demo | >> GMB_loadModule('demo');
demo | Loading module 'demo'... Done.

| Generating native functions... Done.

# Call the GotoPosition service with input 0.5, then call it in a non-blocking
# mode with input 1.

eltclsh> ::demo::GotoPosition 0.5 | >> GMB_demo_GotoPosition(0.5);
eltclsh> ::demo::GotoPosition 1 & | >> GMB_demo_GotoPosition(1, 'nonblocking');
demo::0 | GMB_demo_0

# Get the output of the non-blocking call. There are two possible results shown
# below. First result is if the service is still in progress when the function
# to get the output is called. Second result is if the service is completed.

eltclsh> ::demo::0 | >> GMB_demo_0()
request demo::0 in progress (sent) | ans = REQUEST_IN_PROGRESS
eltclsh> ::demo::0 | >> GMB_demo_0()

| ans = []

# Read the Mobile port of the demo module.

eltclsh> ::demo::Mobile | >> GMB_demo_Mobile()
Mobile {position 1 speed 0} | ans = position: 1

| speed: 0

Figure 4.3: Sketch of a session with the Tcl (left) and genomix matlab bridge (right) clients of
the GenoM3 demo module.
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4.4.2 Reading topics in ROS

When using GenoM3 to produce robotic components for the ROS middleware, the ports
of modules in fact use ROStopics8 to export or receive data: a given out port publishes its
data on a ROS topic, and an in port connected to this out port suscribes to the same topic.
Everytime a client of genomix requests for data published by an out port, genomix uses the
C client to subscribe to the corresponding topic, and to retrieve the data. The subscribing
process adds a little overhead. This point was improved as follows: instead of subscribing to
the topic every time one reads the port, the C client only subcribes once when a first access
to the port is attempted, and reuse the same subscription when one wants to access the
port again. This improves the timing by about 100 ms on localhost.9

8 http://wiki.ros.org/Topics
9 For more information, see the commit message:

https://git.openrobots.org/projects/genom3-ros/repository/revisions/2a2914f9
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5 A GenoM3 module to stream binaural
audio data

5.1 Overview of a binaural audio streaming module

The Two!Ears project focuses most of its research on binaural audition. Sound is acquired
through an interface that digitalizes the signals from the left and right microphones of
the KEMAR head for further processing. Hence, the deployed software architecture
of Two!Ears must include a specific component, which captures the audio data from
the sound interface and makes it available to other components of the GenoM3/ROS
architecture. This GenoM3 server module, in charge of streaming binaural data, will
henceforth be termed audio stream server .

The used sound device is a RME Babyface. It runs in Class Compliant mode1 for
GNU/Linux compatibility. It can be accessed through ALSA2 under GNU/Linux , and can
be replaced by any other ALSA-compliant sound interface.

The required features for the audio stream server are the following:

• Services must be provided to start and stop the acquisition of binaural audio data
from any ALSA-compliant sound interface.

• The audio stream server must stream binaural data through an out port . To limit
the required bandwidth for data transfer, only a sliding window of the most recent
captured data must be streamed. The module must provide the ability to select the
length of this published window according to the frequency of data access by the
clients so as to ensure no data loss inside them.

• Data time-stamping is needed so that the clients can keep track of what they receive,
and can detect any data loss.

A client module must also be provided with the basic elements to receive the audio data

1 See RME documentation: http://www.rme-audio.de/download/cc_mode_babyface_e.pdf.
2 Advanced Linux Sound Architecture
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audio stream server

MATLAB genomix

GenoM

GenoM
module

GMB

Services

client

Audio stream

Figure 5.1: The audio stream server in the software architecture.

from the audio stream server . This client module must have an in port that can be
connected to the out port of the audio stream server , and must propose services to retrieve
the data and check their integrity. The audio stream server is also closely tied to the
genomix matlab bridge, as one of the main goals is to get the audio data in MATLAB .
Sections 5.3.4 and 5.4 will expose the accomplished work for optimizing the link between
these two elements of the architecture.

5.2 Possible designs for the out port of the audio stream server

The ALSA-compliant sound interface internally delivers chunks of audio data. These must
be published on the out port of the audio stream server , together with older data, typically
up to a few past seconds. At least two designs of the out port of the audio stream server
can be envisaged.

5.2.1 Linear design

An initial design of the out port can consist of a kind of FIFO stack: when a new chunk
arrives from the ALSA-compliant sound interface, all the data currently on the port are
shifted so as to make room for this new chunk. For instance, if the port contains N chunks,
1 being the oldest and N the newest, the following happens every time a new chunk is
available (Figure 5.2):

• data in chunk 1 is deleted;
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• data in chunk 2 is moved to chunk 1;

• data in chunk 3 is moved to chunk 2;

• . . .

• data in chunk N is moved to chunk N-1;

• new chunk is copied in chunk N.

Importantly, if a client wants to read the port at a high frequency, only the last chunks of
the port, constituting new data for the client, are relevant. But reading a port implies to
read its whole content, so the client also gets previous chunks that were already internally
saved from previous accesses. This constitutes a waste of time if the port is big and the
client is only interested in the very last chunks.

5.2.2 Circular design

This problem can be circumvented through an alternative design. Instead of handling one
large port, several small ports can be designed, each one publishing a single chunk of data.
In other terms, instead of having 1 port of N chunks, N ports of 1 chunk can be proposed.
The audio stream server then copies received chunks from the sound interface in a circular
way (Figure 5.3):

• first arrived chunk is published on port 1;

• next arrived chunk is published on port 2;
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Figure 5.2: The linear design
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• . . .

• next arrived chunk is published on port N;

• next arrived chunk is published back on port 1, overwriting the previous published
data;

• etc.

An additional “index” port must display the absolute number of published chunks since
the capture started, so that the client knows which ports need to be read. For instance, if
the client already read X chunks and wants to get new data, then

• Accessing the index port, which displays the current index Y of the last published
chunk, the client deduces that it must access chunks X+1 to Y.

• As the chunks are published in a circular way on N ports, this is equivalent to accessing
ports (X+1 modulo N) to (Y modulo N).

• Y-X > N means that the client waited too long and that some needed chunks have
been lost due to overwriting.

In this circular design, the client only reads the data it needs, which is an advantage
compared to the linear design. This solution was implemented, but faced technical
limitations: it turns out that for the MATLAB client, reading a port takes at least few
hundreds milliseconds, no matter the size of the port. It is hence wiser to limit the number
of reads, which leads back to the linear design. A solution to this issue is detailed in
Section 5.3.3.
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5.3 Implementation aspects

5.3.1 Digital audio notions

The audio stream server deals with common digital audio notions. As it is important to
have precise terms for defining these notions, some vocabulary is hereafter recalled to avoid
any confusion:

capture This is the state of a sound device in charge of the acquisition of analog sound
signals from microphones and of their analog-to-digital conversion. The other way is
called playback and is outside the context of the audio stream server .

samples, frames and channels Two channels are involved in stereo audio: “left” is always
considered as first, and “right” as second. A sample is a digital value encoding the
signal of one channel at one point in time. A frame is a collection of samples, one
from each channel, at one point in time.

ring buffer and transfer chunk Frames captured by the sound device are stored in a ring
buffer, managed by ALSA. When an application, such as the audio stream server ,
wants to access these data, it regularly asks ALSA for little chunks of frames from
the ring buffer. These are called transfer chunks and have a fixed size. Several
applications can access the ring buffer concurrently. ALSA maintains for each
application a pointer in the ring buffer to know which frames have not yet been read
by the corresponding application. When one application asks for new data, the chunk
corresponding to the next available frames for this application is sent.

overrun When the application does not read the ALSA ring buffer often enough, the buffer
gets filled with unread data. The capture starts to overwrite on frames that have not
been read yet, and are therefore lost by the application. This is called an overrun.

{non-}interleaved data There are two possible configurations for storing audio data in
memory. Data are interleaved when frames are put one after each other, and they
are non-interleaved when channels are separated.

Interleaved: data = {left[0], right[0], left[1], right[1], ...}
Non-interleaved: data.left = {left[0], left[1], ...} and

data.right = {right[0], right[1], ...}

5.3.2 ALSA and GenoM3 notable features

The audio stream server uses specific GenoM3 and ALSA features, some of which are
commented below:
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• Some audio stream server codels rely on the ALSA API 3 to prepare the sound
interface to the capture and the retrieve of frames. The RME Babyface only supports
one format to encode samples, namely signed integers encoded on 32 bits. Samples
in the ALSA ring buffer are interleaved. The channels are separated prior to be
published in non-interleaved format on the audio stream server ’s out port .

• The out port of the audio stream server publishes, along with the audio data, an index
of the last published chunk. This appears to be the most convenient way to keep track
of time. For further needs in the project, it is also possible to get a high-resolution
timestamp of the last published frame. This is made possible by a function of the
ALSA API that returns the starting date of the capture. By combining it with the
sample rate, the timestamp for any frame can easily be computed.

5.3.3 Synchronous and asynchronous releases

Two main versions of the audio stream server have been released: a first synchronous
server fulfilling the required specifications, and a second asynchronous server with improved
features.

The synchronous release

In this version of the module, the task dedicated to capture is synchronous. Its period
depends on the size of the transfer chunks read from the ALSA ring buffer. For instance, if
the aim is to read chunks of 2205 frames at a sample rate of 44100Hz (i.e., exactly 50 ms of
signal), then the task period has to be less or equal to 50 ms. If the task period is greater
than 50 ms, then the ring buffer is accessed by the audio stream server at a lower rate than is
updated by the audio interface, what eventually leads to an overrun.

A given number of frames for the transfer chunk does not necessarily correspond to a round
number of milliseconds, as expected by GenoM3 . In this case, a slightly shorter task period
must be selected. As the task reads the ring buffer faster than it is filled up, there is no risk
of overrun. However, there comes a time when the buffer does not contain enough data to
build a complete transfer chunk. At this time, the audio stream server must simply wait a
bit longer so that enough data is available in the ring buffer. As transitions between codels
happen at multiples of the task period, the audio stream server has to wait for the next
clock signal before reading the buffer again. Consequently, from time to time, retrieving
the data takes two periods instead of one, so that ALSA has enough time to fill the ring
buffer.

3 See the ALSA C library reference: http://www.alsa-project.org/alsa-doc/alsa-lib/.
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The synchronous design has a big drawback: as the period task is hardcoded, the transfer
chunk size and the sample rate must be hardcoded too. The transfer chunk time has been
set to 50 ms with a sample rate of 44100Hz. Three ports have been proposed following the
linear design exposed in Section 5.2:

• one port of 500 ms (10 chunks of 50 ms);

• one port of 1000 ms (20 chunks of 50 ms);

• one port of 4000 ms (80 chunks of 50 ms).

To change the selected values (transfer chunk time, sample rate and port sizes), the module
has to be recompiled.

The asynchronous release

The best design for a sound capture application is to implement an asynchronous loop.
Instead of reading the ring buffer at a fixed time period, this approach proposes to wait
until an event is raised by ALSA, indicating that there are enough frames in the ring buffer
to constitute a new readable transfer chunk. The idea is to stay blocked in a function of
the ALSA API (snd_pcm_wait()) without CPU consumption, until this internal event
occurs. GenoM3 offers a way to program this design: the task of the audio stream server
has no period, and the codel containing the polling function is declared as “asynchronous”
to let GenoM3 know that it contains such a blocking function.

The task of the audio stream server being aperiodic, the sample rate and transfer chunk
size are no longer hardcoded and can be set at runtime. Concerning the ports, they have to
be rethought because the size of a chunk can now vary. GenoM3 also offers a way to declare
unbounded arrays of values, through the notion of “sequences”. This brings another nice
feature: there is only one port, which size can be set at runtime. For instance, a client can
choose a size that best fits its needs. To sum up, here is the final prototype of the service for
capturing sound, declared in the .gen file of the audio stream server :

activity StartCapture(
in string device = ``hw:1,0'' : "Name of the sound device",
in unsigned long transfer_rate = 44100 : "Sample rate in Hz",
in unsigned long chunk_time = 50 : "Size of transfer chunks in milliseconds",
in unsigned long Port_chunks = 20 : "Size of the Port in number of chunks")

For each parameter, one can read from left to right:

• its direction (in or out, in here because all parameters are inputs);

33



5 A GenoM3 module to stream binaural audio data

• its type (e.g., string);

• its name (e.g., device);

• its default value (e.g., “hw:1,0”);

• its documentation (e.g., “Name of the sound device”).

5.3.4 Timing results

The audio stream server was tested from within MATLAB through the genomix matlab
bridge. The aim was to connect to it and retrieve the data published on its out port.
Following the feature mentioned in Section 4.3.2, a custom parsing function was developed
for the audio stream server so as to read the contents of its port efficiently from the genomix
matlab bridge.

Table 5.1 reports the comparison of timing results with different parsing functions. Times
have been measured for 3 different port sizes, and averaged across 10 operations. These
results must be interpreted relatively to each other, as their absolute values depend on the
power of the CPU running the test.

Port size Parsing with
jsonlab

Custom parsing
in MATLAB

Custom parsing
in MEX file

500 ms 39.7 ms 20.2 ms 2.1 ms
1000 ms 75.1 ms 38.7 ms 4.4 ms
4000 ms 293.5 ms 153.8 ms 19.3 ms

Table 5.1: Example of timing results for parsing data in MATLAB

5.4 Audio stream through a dedicated socket

5.4.1 Improving latency with a new approach

When clients of the audio stream server , such as MATLAB , retrieve the sensed bin-
aural signals, the latency should be as short as possible. As previously exposed, the
use of the genomix matlab bridge for this purpose shows notable drawbacks, namely
the overhead brought by genomix and the fact that data are sent as JSON objects
(which are bigger than binary data and need an extra parsing step, as explained in
Section 4.2.3).
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A new approach is proposed in order to minimize latency. It consists of a dedicated
socket for direct TCP/IP communication between MATLAB and the audio stream server ,
bypassing GenoM3 , genomix and the genomix matlab bridge (Figure 5.4). This solution
allows data to be sent in a binary format, without JSON formating. The design of the
dedicated socket is detailed below.

audio stream serverMATLAB genomix

GMB

Dedicated socket

Figure 5.4: The dedicated socket in the software architecture

5.4.2 Communication aspects

Communication on the audio stream server side

On the server side, communication over a dedicated socket is made possible by embedding C
code for socket communication directly into codels of the audio stream server . A new task
is hence declared in the GenoM3 module, with associated activities for allowing incoming
connections or end the communication.

Implementation is done by using functions from the Internet Protocol Family library for
inter-process communication (sys/socket.h). Several parameters have to be set before
opening the connection. Main parameters include:

Domain indicating the used protocol for the communication. It is set to AF_INET, for IPv4
Internet Protocol.

Type specifying the communication semantics. It is set to SOCK_STREAM, which provides
sequenced, reliable, two-way, connection-based byte streams.

Blocking type being set to BLOCKING_SOCKET.

Port number being the port used to listen to incoming connections. Port 8081 was chosen
for this application.

Once the socket is opened, the module’s task in charge of the communication starts listening
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to incoming connections from clients in an infinite loop. The task asynchronously waits4 for
new events on the socket , using the standard poll(2) function on a set of file descriptors,
one for each client. Three kinds of events can occur:

• A new client wants to establish the connection. It is added to the set of file descriptors.

• An existing client asks for audio data. Data are sent back to the client.

• An existing client closes the connection. It is removed from the set of file descriptors.

Data are sent in a binary format. As each sample is encoded on 32 bits, it takes exactly 4
bytes to send one sample.

Communication on MATLAB side

To ensure the communication over the dedicated socket on MATLAB side, the Instrument
Control Toolbox providing TCP/IP support inMATLAB is again used5.

Three main steps are designed in MATLAB :

1. A TCP/IP object is first created with a function called dedicatedSocketOpen, and
the connection is established on port 8081. Data will be received in an input buffer,
the size of which is set thanks to the InputBufferSize field of the TCP/IP object.

2. Then, the dedicatedSocketRead function enables the client to request audio data.
Once the request is sent, the client waits until the input buffer is filled with incoming
data, which takes a few milliseconds. This is done by checking the value of the
BytesAvailable field of the TCP/IP object, indicating the amount of bytes ready
to be read from the buffer. This function should be regularly called by the client, in
order to keep receiving newest data.

3. When the client wants to end the communication, it calls the dedicatedSocketClose
function, deleting the used TCP/IP object.

As explained above, the server sends audio samples on the dedicated socket in a binary
format, with 4 bytes per sample. In MATLAB , bytes are received in a long array and
need to be structured: the first four bytes of the array will make the first sample, the
next four bytes the second one, etc. This structuring step is only a matter of memory
management, and is coded in a MEX function for timing efficiency. Eventually, the output
of the dedicatedSocketRead function is a Nx2 matrix, where the first column contains all

4 The codel implementing the loop is therefore declared as asynchronous.
5 As was the case for the genomix matlab bridge (Section 4.3.2).
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left samples, the second column all right samples, and where N is the amount of frames
that the server sent.

Left[1] Right[1]
Left[2] Right[2]

. .

. .

. .
Left[N] Right[N]

5.4.3 Complying with the audio stream server releases

As presented in Section 5.3.3, there were two main releases of the audio stream server . The
dedicated socket also had two versions complying with the releases.

First release

In the first release, the audio stream server was publishing audio data on three ports of
different sizes (500 ms, 1000 ms and 4000 ms). Thus, the MATLAB client could choose
which one of those three sizes would be used for sending the audio stream over the dedicated
socket . In his request, the client was specifying the chosen size.

Second release

In the current second release, there is only one port, the size of which may be chosen by
the user. In this version, when the client requests new data, the first bytes sent back by
the server indicate the size of data to be read, in order to let the client know how many
bytes it must expect.

The current version of the dedicated socket even adds a new feature: when requesting
new data, the client also indicates to the server the index of the last chunk it has read.
This enables the server only to send back new data, and not the whole content of the
port, hence keeping the spirit of what was intended with the circular design for the port
(Section 5.2.2). This last point is another major improvement in the minimization of audio
stream latency.
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5.4.4 Timing results

A significant improvement has been reached by adopting the dedicated socket approach.
In the context of the first release, timing bench tests were set up in order to measure the
efficiency of the dedicated socket compared to the use of the genomix matlab bridge for audio
stream. Timing results on localhost, averaged on a hundred tries, are presented in Figures
5.5 for the genomix matlab bridge and 5.6 for the dedicated socket .

Two main stages are involved in the communication:

1. Sending the request and reading the answer from the server.

• In Figure 5.5 (with the genomix matlab bridge), the dark blue curve shows the
time for both request and reading steps.

• In Figure 5.6 (with the dedicated socket), the dark blue curve corresponds to
the request and the green curve to the reading step.

2. Converting the answer into a MATLAB structure (which consists in parsing a JSON
object for the genomix matlab bridge and binary data for the dedicated socket).

• On Figure 5.5 (with the genomix matlab bridge), the red curve shows the time
needed for parsing with jsonlab (Section 4.3.2) and the green curve corresponds
to a custom parsing function (Section 4.3.2).

• On Figure 5.6 (with the dedicated socket), the red curve shows the time for
structuring data.

The total time for receiving data is shown with the light blue curve on both figures.

Table 5.2 shows timing results for the port with 4000 ms of audio data. It can be stated that
using the dedicated socket reduces the latency by a factor close to 3.

Version Request & read [ms] Structure or parsing [ms] Total [ms]
genomix 370 80 450

dedicated socket 157 3 160

Table 5.2: Times of each stage for reading Port4000

38



5.4 Audio stream through a dedicated socket

Figure 5.5: Time to get audio data from the audio stream server with the genomix matlab bridge
vs port size

Figure 5.6: Time to get audio data from the audio stream server with the dedicated socket vs
port size
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6 The KEMAR HATS with controllable
azimuthal degree-of-freedom and audio
stream server

In the framework of Task 5.1 of Two!Ears, it was planned to mount an anthropomorphic
binaural head on a pan-tilt unit, so as to get rotational degrees-of-freedom. Soon after
the beginning of the project, the consortium decided to start from a complete head-and-
torso-simulator (HATS) instead of restricting to a binaural head. The KEMAR HATS
was then selected, in view of its widespread dissemination and because several instances
were already available within the consortium. It was agreed to endow the neck of this
HATS with an azimuthal degree-of-freedom. One major benefit of this motorized test bed
is that it can still mimic acoustic waves scattering in humans even when the head is in
motion. The tilt degree-of-freedom is no longer considered, because it does not contribute
sufficiently to active motion, especially considering the effort which would be required to
modify the KEMAR HATS accordingly. The targeted design then differs from the initially
planned work, but is more complex, as mechanical parts have to be mounted inside the
HATS: the servomotor to control the head azimuth, the limit sensors required to constrain
the movement of the head, etc. During year 2, the head of the KEMAR HATS will be
mounted on the PR2 robot as committed in the project application, so as to get additional
translational degrees-of-freedom for wider range of motion.

This chapter summarizes the work conducted in this respect, from the mechanical, control
and software viewpoints. It is also shown why and how the audio stream server was merged
with this hardware.
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6.1 Characteristics of the genuine KEMAR head and of the
used sensor supply module

The anthropomorphic KEMAR HATS mentioned in this report is a Type 45BB-2 model,
shown in Figure 6.1. It is fitted with “Large” European-like ears1. Its main features are
summarized below.

Figure 6.1: G.R.A.S. 45BB-2 KEMAR HATS

1 http://www.campbell-associates.co.uk/products/Gras/productdata/KEMAR-Manikin-Type-45BA.
pdf, see also http://www.ee.bgu.ac.il/~acl/Equip/KEMAR.pdf and http://www.gras.dk/45bb-2.
html.
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6.1.1 Microphones

Two G.R.A.S Type 26CS microphones2 are placed inside the ears. This type of microphone
is composed of a small ceramic thick-film substrate with a very high input impedance.
Associated to each of them is the amplifier. This element has three functions. First, it
receives and extracts the current coming from the connector to supply the microphone.
Second, it injects and mixes the acquired audio signal into this same connector. Finally, a
guard ring guaranties a shielding protection to minimize the influence of stray or parasitic
capacitance and microphonic interference. Each amplifier has an integrated Microdot output
connector, which may imply a Microdot-to-BNC cable to connect it to the audio acquisition
system. The overall specifications are reported on Table 6.1.

6.1.2 The IEPE Supply Module M28

IEPE stands for “Integrated Electronics Piezo Electric”. It is defined in the IEEE 1451.1
standard for the output of piezoelectrics transducers or microphones. The aim of this
protocol is to provide a clean power supply for sensors placed far from the amplifier.
Indeed, standard voltage supplies have the drawback to be sensitive to electrical noise when
they travel along cables. Moreover, long cables attenuate the power so that it becomes
impossible to set an accurate voltage. This problem is solved with current source supplies.
Current is not influenced by electrical fields and feedback guarantees a selected reference
current level.

2 http://www.gras.dk/26cs.html.

Figure 6.2: G.R.A.S Type 26CS Microphone Figure 6.3: IEPE Supply Module M28
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Specification Value Unit
Frequency Range 2.5 to 200 k Hz

Slew Rate 20 V/µs
Input Impedance 20 // 0.4 GΩ // pF
Output Impedance <50 Ω

Output Voltage Swing, min @ 24-28 V CPP voltage supply 8 Vp
Noise (A-Weighted) max 2.5 µV

Noise (A-Weighted) typical 1.5 µV
Noise (Linear 20Hz - 20kHz) max 6 µV

Noise (Linear 20Hz - 20kHz) typical 3.5 µV
Gain -0.45 dB

Power Supply (Constant Current Power) 2 to 20 (typ. 4) mA
DC bias voltage typical 12 V

Weight 3.0 g

Table 6.1: Specifications of G.R.A.S Type 26CS microphones

Each 26CS microphone is connected on an M28 module3. This device has multiple
functions:

1. Generation of a 4 mA constant current for the microphone supply.

2. Injection of the current into the cable and combination with the sound signal.

3. Extraction of the sound signal coming from the microphone out of the bias current.

4. Amplification, with a defined gain, of the sound signal and band-pass filtering of this
signal.

The circuit diagram is shown in Figure 6.4. The IEPE module injects a constant current
Iconst into the signal cable of the microphone. The output signal from the microphone
may oscillate around the bias voltage. Therefore, the de-coupling capacitor CC keeps DC
components away from the output of the M28 so that the instrument, in our case an RME
Babyface, is free from DC components. The minimum output voltage is the saturation
voltage of the integrated electronic (about 1V). The maximum value is limited by the supply
voltage of the constant current source (US=24 VDC with the M28 ).

Each IEPE Supply Module M28 contains the electronic circuit to supply one microphone.
For multichannel applications, such as our binaural audition case, additional M28 modules
can be plugged into one another by means of screwed in banana plugs at the side wall.
These plugs connect the power supply voltage to all modules.

3 http://www.mmf.de/manual/m28mane.pdf.
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Figure 6.4: Internal electronic circuit of the M28

6.1.3 Mechanical Parts

By default, the head of the KEMAR HATS is not rigidly linked to the torso, and can
be moved manually in azimuth, with the possibility to lock it at some specified angles
(Figure 6.5). The assembly enabling this feature is shown in Figure 6.6. The black part goes
inside the torso, and is endowed with an angle indicator. This angle indicator constitutes
in some sense the neck, as it remains visible between the torso and the head. The grey
part is rigidly attached to the head.

Figure 6.5: The KEMAR neck, with locks at 0◦, 45◦, −45◦.
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Figure 6.6: The assembly mechanism of the KEMAR HATS, with its angle indicator.

6.2 Devices for a controllable azimuthal degree-of-freedom
on the KEMAR HATS

6.2.1 Mechanical design

As mentioned above, the aim is to design and manufacture a controllable azimuthal degree-
of-freedom to be inserted in the KEMAR HATS. This section proposes a hardware design.
The basic idea is to replace the two parts shown in Figure 6.6 by an aluminium mechanism
designed on the basis of the CAD model of the KEMAR HATS (Figure 6.7). The part
shown in Figure 6.8-left is screwed on the genuine mounting holes of the KEMAR torso,
in exactly the same way as the original black angle indicator (Figure 6.6). Similarly, the
complementary part displayed in Figure 6.8-right is fixed to KEMAR’s head by using
the existing holes. So, the integrity of the KEMAR HATS is ensured4. Importantly,
both parts are endowed with holes so that the cables connected to the two microphones
can transmit the binaural data to the acquisition device through the lower part of the
torso.

4 G.R.A.S. even accepted to guarantee the KEMAR HATS after the introduction of this motorization
system.
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Figure 6.7: CAD design of the KEMAR motorization system

Figure 6.8: Aluminium parts to be fixed inside the torso (left) and inside the head (right).
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6 The KEMAR HATS with controllable azimuthal degree-of-freedom and audio stream server

The final device is displayed in Figure 6.9, where all pieces are assembled as they must
fit inside the torso. This figure also shows the servomotor, described in the next section.

6.2.2 Actuator and sensors

To get an accurate and efficient control of the head, a set including a servomotor, its
gearhead, an encoder, and an electronic controller were selected. Two criteria were studied
in the motor selection.

Motor technology Various solutions exist with DC or AC supplies. The last one is mainly
reserved for big and/or heavy loads. In adition, they are more complex to drive. DC
motors are easier to operate due to their compactness and simplicity.

Figure 6.9: KEMAR’s full motorization system.
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In this domain two versions exists. The first one called “DC brushed motor” is a
well-known solution. However, more recently, a new DC motor technology has grown
up called “Brushless DC motor”. These two technologies differ in their commutation
methods (phase commutation) necessary to create rotation. The old DC brushed
motor is based on a mechanical commutation. It is simple to control but it also has
several drawbacks. Indeed, due to the mechanical commutation, DC brushed motors
are noisy and request a regular maintenance due to the friction of the brushes on the
commutator. On the contrary, with an electronic commutation outside of the core,
Brushless DC motors are less noisy and do not need such an important maintenance.
However, their control is more difficult. This drawback has been, however, solved
with modern integrated industrial controllers.

In our opinion, the brushless DC motor represents the best compromise for Two!Ears
as this technology generates the least audible noise.

Power and torque of the motor If we consider the head as a sphere of 2.2 kg with a diameter
of 0.2m, then its moment of inertia Jsphere is equal to:

Jsphere =
2

5
×M ×R2 =

2

5
× 2.2 kg× (0.1m)2 = 0.0088 kg.m2. (6.1)

Considering a maximum startup acceleration of 26 rad.s−2 (see for instance (6.5)
below), the maximum torque Tstart at startup is determined by:

Tstart = Jsphere ×
dΩ

dt
= 0.0088 kg.m2 × 26 rad.s−2 = 0.2288N.m. (6.2)

So the output torque after the gearhead must be at least of 0.2288N.m.

The selected servomotor has a nominal power of 100W, 0.32N.m of nominal torque
with up to 0.95N.m of stall torque. A 1/9th ratio planetary gearhead was inserted,
reducing the output speed and increasing the delivered torque so that

Tstart_gearhead = Tmotor×Gearhead ratio×η = 0.95N.m×9×0.8 = 6.84N.m. (6.3)

Finally, completing the motor block set, an accurate encoder was added. Although
the selected brushless motor already integrates sensors providing a position of the
rotor within a range of 120◦, an accurate 2048-step relative quadrature encoder was
integrated at the output of the motor shaft for accurate position and velocity control,
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leading to wished resolution.

Resolution =
2π

Encoder × 4(quadrature)×GearheadRatio

=
2π

2048× 4× 9
= 8.52× 10−5 rad/pulse. (6.4)

As the maximum acceleration, determined by the motor’s manufacturer, is 300000 pulse/sec2,
and taking into account the resolution given by equation 6.4, the maximum acceleration
can be determined, and writes as:

AccelerationMAX = 300000 pulse.s−2 × 8.52.10−5 rad.pulse−1 = 25.56 rad.s−2. (6.5)

Completing the set, an Harmonica Controller from ELMO was selected. This “Compact
and Smart Digital Servo Drive” comes from a series of intelligent compact digital servo
drives for DC brush, brushless and linear motors. It supports up to 13.3A continuous
current and integrates all the processing and power switching elements necessary for proper
commutation. The Harmonica is capable of delivering a peak power of 2200W and 1100W
of continuous power. Based on Elmo’s SimplIQ motion control technology, the Harmonica
is capable of operating in position and current modes and contains a wide range of feedback
and I/O options. The drive operates on 24V DC power. Communication with the outside
world is done through the standard CAN bus protocol.

Two limit sensors were inserted, so far based on the Hall effect, in combination with a
magnet mounted on the moving part of the aluminium assembly displayed in Figure 6.8-
left. They will soon be replaced by two photoelectric proximity sensors. Those will
deliver much more accurate end-of-course positions due to their insensitivity to magnetic
fields. As a side effect of the new design, the admissible range of the head azimuths
will be increased from [−80◦; +80◦] to [−90◦; +90◦], with the same conventions as in
Figure 6.5.

6.3 Low-Level Libraries

Three different custom low-level libraries for the motorization of the KEMAR head have
been developed (Figure 6.10): the Socketcan provides an interface with the GNU/Linux
socket CAN layer; on the top of it, the Harmonica provides an interface with the Elmo
Harmonica Motor Controller ; the Kemar library provides an interface with the KEMAR
HATS itself.
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6.4 GenoM3 Integration

Figure 6.10: Low-level libraries Architecture

6.3.1 The Socketcan Library

This library is the very bottom layer of the communication with the Harmonica controller,
which links the software with the hardware. Its main goals are:

• to initialize or end the communication with the CAN bus controller;

• to send or receive a message on the CAN bus.

6.3.2 The Harmonica Library

This library includes functions to initialize the motor controller, as well as to stop it.
Other functions are included to set and get the position of the motor from the controller.
Internally, these functions send the adequate word to the controller (who actually drives
the motor) through the CAN bus using the above Socketcan library.

6.3.3 The Kemar Library

This library is intended specifically for the KEMAR HATS. It relies on the underlying
Harmonica library. It includes functions for Homing, Position control or Velocity control
of the head. These involve the aforementioned limit sensors mounted on the KEMAR
aluminium assembly.

For a detailed information about each library, their functions and how they interact
with each other, tables with function names and short descriptions are provided in Ap-
pendix 9.6.

6.4 GenoM3 Integration

The above Kemar library was encapsulated into a GenoM3 module for its integration in
the Two!Ears deployed robotics software architecture and the concurrent execution of
other tasks.
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6.4.1 Homing Procedure

The Homing activity aims at resetting the position of the head to a reference, so as to
calibrate its position encoder. The process starts by moving the head to the left until it
reaches the left limit sensor. At this point, the position encoder is reset to zero. Then,
the head starts rotating to the right until it reaches the right limit sensor. The reference
position is defined as the midpoint between these extremal positions. The homing is then
completed, and the maximum admissible rotations along the left and right directions are
deduced.

All this is performed in a state machine involving two codels. One is in charge of sending the
command to the Harmonica controller and the second one, which is asynchronous, processes
the replies from the Harmonica controller. Notice that the Homing function needs to be
called at least once before using the other services described below.

6.4.2 Absolute Position Control

The absolutePosition activity drives the head to the position specified as the input
parameter, considering that the zero position corresponds to the above homing posi-
tion.

This activity can be divided into two codels. The first one is synchronous. It sends the
requested position to the controller, through the position control implemented in the
aforementioned Kemar library. The second one concurrently reads the current position
of the head, and ends when the head reaches the requested position. It is declared as
asynchronous, so that it does not block the overall behavior. For further details, see the
.gen file in Appendix 9.5.2.

The behavior described above does not mean that the user sends a request for an absolute
position and gets back the control of the software. This means that while the head
moves, the user cannot perform any other control task on the servomotor. However, the
module itself can perform parallel tasks if they are required. This would be the case if the
Motorization of the KEMAR and the audio stream server were integrated into one single
GenoM3 module. While the head moves, the ALSA functions could keep recording audio
(which is an asynchronous activity by itself) and the GenoM3 module would retrieve new
data when available.
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6.4.3 Relative Position Control

The relativePosition activity is similar to the absolutePosition activity exposed
above, but instead of providing an absolute targeted position as input parameter, this
activity allows to move the head relatively to its current position. For instance, if the
head is at +20◦ from the reference point established during the homing procedure and
the relativePosition activity is called with an input parameter equal to +25◦, the final
absolute position will be +45◦.

6.4.4 Velocity Control

This activity moves the head at a given constant speed defined in ◦/sec. The head keeps
moving until this function is called again with the 0◦/sec velocity parameter or until the
maximum left or right limit established by the Homing is reached. This activity does not
affect the default velocity. That is, if the Velocity Control activity is called to move
the head at a given velocity, then the next time Position Control activity is called, the
head moves again at the velocity that was set previously by Set Speed or by default in
the Homing (section 6.4.1).

Unlike Position Control activities, this one only works synchronously. When the user calls
this activity, the velocity is sent to the Harmonica controller and the user gets back the
control of the software.

6.4.5 Get Current Position

This activity enables the user to retrieve the current position of the head at any time. This
can be helpful for keeping track of the position during a move. The process of getting
the position is the same as for any request sent to the controller: a message is sent and
the answer is waited for in an asynchronous codel. The process is quite fast: it only
takes 1.5ms for the motor controller to send the current position back to the GenoM3
module.

6.4.6 Set Speed

The speed is set by default at 100◦/sec after the Homing is done. With Set Speed, the user
can set a new value for Control in Position at any time. To keep consistency with other
functions, the speed is expressed in ◦/sec.

To conclude, if the Homing has not been called, then the Position Control or Velocity
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Control functions do not perform the requested activity. This is so because the absolute
zero has not been set, or the maximum left and right positions have not been calculated,
so that the controller has no reference for the movement.

6.5 Merging the audio stream server and the Motorization of
the KEMAR into a single GenoM3 Module

The need to get motor and audio features simultaneously motivated the merging of the
audio stream server and the Motorization of the KEMAR into the same GenoM3 Module.
This allows an easy, fast and effective synchronization of the audio data and the position
of the head at the exact time of retrieving new chunks from ALSA. Easy means that all
functions are in the same module, so that no external functions or modules are needed.
Fast means that data are internally synchronized in the merged module before being sent
to the MATLAB client over the dedicated socket .

When a new chunk of audio samples is about to be published on an out port, the current
position of the head is read and both data are published on this port. So, when this port is
accessed, e.g. from MATLAB , the user gets all the samples from the microphones (frames)
as well as the head position corresponding to the final time of each chunk. For example, if
the capture is started to record 80 chunks (Section 5.3.1) of 50ms of audio data sampled
at Fs=44100Hz, then the published data are as follows:

CHUNKS FRAMES POSITIONS
Chunk[0] Frame[0]

Frame[1]
...

Frame[2205] Position[0]
Chunk[1] Frame[2206]

Frame[2207]
...

Frame[4410] Position[1]
Chunk[2] Frame[4411]

...
...

...
Frame[(N-2)*2205+2205] Position[N-2]

Chunk[N-1] Frame[(N-1)*2205+1]
Frame[(N-1)*2205+2]

...
Frame[(N-1)*2205+2205] Position[N-1]

Chunk[N] Frame[N*2205+1]
Frame[N*2205+2]

...
Frame[N*2205+2205] Position[N]
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Each chunk of data has an index number. This number is incremented by one every time a
new chunk of audio data is available. It is used as a reference value for synchronizing the
position of the head with the binaural audio data. This index is also published on the out
port along with the binaural audio data and the positions of the head.

A new feature has been added with this merge. When the Control in Absolute Position
(Section 6.4.2) activity is called, the index number of the current chunk and the position of
the head before it starts moving are published in a port named Indexes. When the head
reaches the requested position, the current chunk and that position are also published in
the port.

Another improvement has concerned the time it takes to retrieve the binaural audio through
the dedicated socket . Due to the fact that some logic had to be added in order to include
the position of the head in the buffer that is sent from the server, the logic involved in the
client also had to be changed.

Data sent by the server to its clients now consist of the following elements:

• number of new chunks to be expected by the client;

• left and right samples (non-interleaved) from the new chunks;

• index of the last chunk;

• positions of the head synchronized with the audio.

In other words, in addition to the samples from the binaural audio data, extra values are
inserted: the number of chunks or blocks to be sent over the dedicated socket , the last
chunk’s index and the positions of the head.

Instead of waiting for a fixed number of bytes to read (according to Port500, Port1000 or
Port4000 for the first release of the audio stream server , described in section 5.4.3), the
clients follow the following steps to retrieve the buffer sent by the server:

1. Wait until the value BytesAvailable field of the TCP/IP object (Section 5.4.2) is
greater than 0 (this varies according to the connection and the available bandwidth).

2. Read all the available bytes in the buffer.

3. The first value is the number of chunks to be sent by the server (N). So, the client
calculates the total number of bytes to read and stores the samples that have already
come.

4. Wait until the remaining samples arrive and retrieve them.

This strategy improves the total time it takes to retrieve all the information through the
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dedicated socket (shown in Figure 6.11) over localhost , described in section 5.4.4. While it
was 160ms, this time is reduced to only 86ms with this new logic. Table 6.2 shows a more
detailed result for different data sizes.

Figure 6.11: Total time for each stage to retrieve data over dedicated socket on localhost as a
function of the port size.

“Port” (ms of data) Request [ms] Read [ms] Structure [ms] Total [ms]
500 16 11 1 28
1000 17 13 2 32
4000 36 46 4 86

Table 6.2: Total time for each stage to retrieve data over dedicated socket on localhost as a
function of the port size (values from Figure 6.11).

To make consistent comparisons between the version described in Section 5.4.4 and this
new one described above, as the ports size is not fixed with the asynchronous audio stream
server , the parameters and the time instants to request data were chosen so as to match
the synchronous version, along Table 6.3.

Chunks of 50ms are considered, with sampling frequency Fs=44100Hz, so that N writes as
N=NumberOfChunks*(SamplesPerChunk*2(channels))+1(position)+2.
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6.6 Further Results

“Port” (ms of data) Samples(N) Bytes
500 44112 176448
1000 88222 352888
4000 352882 1411528

Table 6.3: Bytes sent as a function of the port size.

6.6 Further Results

Timings over localhost look promising as shown in Figure 6.11. However, the audio
stream server and its clients will be running on different computers. Therefore, the same
experiment was held over the CNRS network and on a local network built around a
switch.

Figure 6.12 shows the outcome of an experiment conducted in the CNRS network.
The communication is slower than on localhost. More details can be read from Ta-
ble 6.4.

Figure 6.12: Total time for each stage to retrieve data over dedicated socket on CNRS Network
as a function of the port size.

However, these timings improved over the Local Network, almost matching the ones over
Local Host as it is shown in Figure 6.13 and more detailed in Table 6.5.
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“Port” (ms of data) Request [ms] Read [ms] Structure [ms] Total [ms]
500 32 4 1 37
100 48 10 3 61
4000 145 37 4 186

Table 6.4: Total time for each stage to retrieve data over dedicated socket on the CNRS Network
as a function of the port size.

Figure 6.13: Total time for each stage to retrieve data over dedicated socket on Local Network as
a function of the port size.

“Port” (ms of data) Request [ms] Read [ms] Structure [ms] Total [ms]
500 27 4 1 32
100 30 10 3 43
4000 52 36 8 96

Table 6.5: Total time for each stage to retrieve data over dedicated socket on Local Network as a
function of the port size.
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7 Virtual environment for the deployment
system based on MORSE

7.1 Introduction

The cognitive components of the Two!Ears development architecture need to be tested
while the functional layer of the deployed architecture is being implemented. This need also
appears in large-scale experiments in robotics, and this is the reason why the development
of MORSE was launched some years ago at CNRS . MORSE (M odular OpenRobots
S imulation Engine) is a generic simulator for robotics. It focuses on realistic 3D simulation
of small to large environments, indoor or outdoor, with one to tens of robots, including
visual rendering and physics simulation. Nowadays, there is a community of about 100 users,
and about 15 developers worldwide keep enhancing the software.

The user describes the scene to be simulated using the python API in a small Python
script. There, the robot(s) and the environment have to be addressed. MORSE provides
several command-line tools to create stubs. The process is very fast to get a first running
simulation.

MORSE comes with a set of standard sensors such as cameras, laser scanners, GPS, odom-
etry to name a few, and actuators such as speed controllers, high-level waypoint controllers
or generic joint controllers. It also incorporates robotic bases such as quadrotors, ATRV,
generic 4 wheel vehicle, or the PR2 . New ones can be added easily.

MORSE rendering is based on the Blender Game Engine. This OpenGL-based Game
Engine supports shaders and multi-texturing, provides advanced lighting options, and uses
the state-of-the-art Bullet library for physics simulation.

The user can select the level of realism of the simulation. For example, to work on vision,
the user needs accurate camera sensors but may not care too much about the realism of
the motion controller. MORSE lets the user define how realistic the components of the
robot should be.

MORSE also supports two different strategies for handling time: best effort, that tries
to keep up with the simulation, at the cost of dropping frames if necessary, or fixed step
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to ensures the simulation accuracy. In this last case, MORSE exports its own clock, so
that external time-dependent modules can be adjusted. MORSE also complies with HLA
specifications.

MORSE does not make any assumption on the user’s architecture. At the moment, it sup-
ports four open-source middlewares (ROS , YARP, Pocolibs and MOOS ). It also supports a
simple socket-based protocol for easy integration in another language/toolbox.

The following sections describe the simulation environment for rendering scenes and
mechanical robot behavior with MORSE .

MORSE was chosen because it can be interfaced transparently with GenoM3/ROS . It
can be easily linked to the cognitive level thanks to the genomix matlab bridge and visual
processing can be efficiently implemented in GenoM3 . Therefore, the whole architecture
stays the same either in the virtual or real environment.

Even though MORSE does not provide auditory information, the complete simula-
tion system will be performed on two parallel “virtual worlds”. The visual informa-
tion will be from MORSE and the auditory information will come from the WP1-
framework.

7.2 Describing a Toy Scenario

A simple Python script has been defined so as to describe a first simulation scenario for
Two!Ears. It includes a robot along with its sensors and actuators.

7.2.1 The Robot

Two robots have been simulated so far: a full PR2 able to navigate and to control the
motion of its torso, arms and head; a “head-on-a-stick” type system, that is, a head-and-
torso-simulator (HATS; used model: KEMAR) endowed with cameras for stereoscopic
vision1, allowing rotation motion of the dummy head to actively explore the environment.
This last device is shown in Figure 7.1.

As ROS is the middleware underlying the Two!Ears deployment system, a ROS interface
was included in the Python script to control the PR2 orKEMAR robot.

1 A design from scratch was made, due to Copyright issues.
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7.2 Describing a Toy Scenario

Figure 7.1: Virtual KEMAR HATS

7.2.2 Sensors

Three sensors have been included in the description of this scenario, for the PR2 :

Odometry An odometry has been fitted to the robot so as to estimate its position over
time. The name “odom” is specified as the ROS topic (i.e., port) that publishes the
corresponding data.

Laser Scan One laser scan for distance measurement at every pointing direction is needed.
Its range, resolution and scan window are specified as well as the name “base scan”
for the ROS topic where corresponding data is published.

“RGBA” cameras Two such cameras (RGBA being a type defined in MORSE ) have been
mounted on the PR2 head. Their focal length, as well as their width and height
resolution in pixels can be set. “Video camera” was the chosen name for the ROS
topic where the data of the cameras are published.

For the KEMAR, the same RGBA cameras have been included and placed in the positions
of the eyes.

7.2.3 Actuators

The PR2 has been equipped with two actuators.

Motion XYW This actuator enables the motion of the base of the PR2 . The related ROS
topic was named “cmd vel”.
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Keyboard This actuator has been added so as to drive the robot manually. It is especially
useful to build a map offline by using SLAM functions in the so-called navigation
stack of the robot, that is, in the collection of ROS nodes (i.e., modules) for
navigation. This map is a prerequisite to any positioning/navigation of the PR2 in
the environment.

For the KEMAR, no actuator has been included as its rotational dof is straightly controlled
from the aforementioned GenoM3 module.

7.2.4 The Environment

The environment where the simulation takes place is a .blend file. It is designed in Blender,
and must be specified in the description of the scenario.

For both robots, a default scenario included in MORSE was chosen as the environment. It
emulates the robotics hall of CNRS , where some Two!Ears large scale experiments will
take place.

7.3 GenoM3 -MORSE Integration

A virtual robot in MORSE can be accessed (control and data) from within a ROS module
thanks to the ROS support provided by MORSE . As MORSE and GenoM3 create one
ROS node each, it is straightforward to access from a GenoM3 module a ROS topic (port)
associated toMORSE , so as to control a robot. To retrieve data from the sensors, a GenoM3
module has to subscribe to the specific MORSE ’s ROS topic where the required data is
published. This is the case for the KEMAR, which is a simple robot.

The PR2 is a much more complex robot which works with ROS actions2 for interfacing
with preemtable tasks (moving the base of the PR2 or performing a laser scan). The
middleware-independance inherent to GenoM3/ROS implies that ROS actions should not
be called directly from a GenoM3/ROS component. This is the reason why an additional
Python script has been implemented, as shown in Figure 7.2. This new Python script
creates a new ROS node. The described implementation to control a virtual PR2 within
MORSE is to write in a GenoM3/ROS module an interface enabling a user to send the
required parameters to the Python script. This Python script encapsulates them into ROS
action goals and writes them on the targeted ROS topic.

The first step to control the PR2 was through the ROS navigation stack. After that, a

2 http://wiki.ros.org/actionlib
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Figure 7.2: Final Architecure to integrate MORSE and GenoM3/ROS

simple GenoM3 module was coded to send the desired position of the joints (both arms
and torso, and the pan and tilt on the head) to the Python script in charge of the control.
This allowed the user to control separately each part of the PR2 .

Below are the different activities in the GenoM3/ROS module listed that control the
virtual PR2 on MORSE .

• Move head;

• Move left arm;

• Move right arm;

• Move torso;

• Navigate.

Figure 7.3 shows the PR2 controlled with the GenoM3 module through the genomix matlab
bridge.

For the control of the neck rotation of the KEMAR HATS, a much simpler GenoM3
module was coded. It fills directly a specific ROS topic with the required angular position
and velocity. It simulates the activities described in section 6.4 for Position Control and
Velocity Control .
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Figure 7.3: The PR2 on MORSE controlled with the GenoM3 module through the genomix
matlab bridge

As mentioned previously, user-defined cameras, such as the RGBA, have been mounted on
the virtual robots by means of the Python script that describes the simulation’s scenario.
Depending on their parametrization, the size of the published data changes. For instance,
if width=256 and height=256, then the output buffer (on its ROS topic) is made of
256*256*4=262144 elements, each one refering to the R, G , B and A for each pixel. A
Python script is not necessary to access these values as a the ROS topic can be accessed
via a GenoM3/ROS module. Note that even though two RGBA cameras were included in
the simulation, the real implementation will entail two RGB cameras. Therefore, the data
related to A is not be used in image processing algorithms.

It is important to remind that the way how the two virtual robots described here are
controlled is completely reproducible for the real KEMAR and PR2 .
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8 Ongoing work and short-term prospects

This chapter summarizes ongoing work as well as planned work in the short term. First, the
main issues are described, which are related to KEMAR head-and-torso-simulators. These
essentially consist in further instrumentation and in collecting new head related transfer
functions (HRTFs). Then, software developments concerning vision are briefly mentioned,
and work at the intersection of WP2 and WP5 is discussed.

8.1 Issues related to the KEMAR HATS

8.1.1 Design of GenoM3 control modules for other motorized KEMAR
HATS

Before the beginning of the project, URO and TUB had designed a system for the
control of the neck rotational degree-of-freedom of their own KEMAR HATS, based on a
POWERCUBE rotary actuator. As this is very noisy while in motion, a new solution was
proposed in Chapter 6 for Two!Ears. Unfortunately, due to the differences between the
former and our most recent models of the KEMAR HATS, this new solution cannot be
brought to their HATS. So, a GenoM3 skeleton, similar to the one shown in Appendix 9.5.2,
was coded and distributed to URO and TUB. In the short term, they will include, in
collaboration with CNRS, their own low-level libraries. The aim is obviously to access all
the KEMAR HATS of the consortium with the same interface, that is, the same .gen file
gathering the same internal data structure, services and ports, so that only the underlying
hidden code differs. Similar integrations with other binaural heads from USFD and RUB
are under study.

8.1.2 Design of a new HRTF database for the motorized KEMAR HATS

The motorization of the KEMAR HATS is functional, and provides a control of the
relative angle between its head and its torso. However, binaural methods based on
HRTF measurements cannot fully be applied, e.g., for source localization or separation.
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Indeed, existing KEMAR HRTF databases, such as the CIPIC HRTF database1, the
MIT MediaLab database2, or the TUB database3 assume that the head and torso are
sticked to each other. So, acoustic measurements will be conducted for a dense grid of
relative head-torso angles values, and the corresponding extended HRTF database will be
disseminated publicly.

8.1.3 Instrumentation of the KEMAR head with stereovision

The KEMAR head must be equipped with a stereroscopic sensor. As mentioned in
Section 4.2.3 of Deliverable D3.2, several sensors can be envisaged with the following
requirements and options:

• passive stereovision is preferred (no random light is projected on the scene by the
visual sensor);

• the stereoscopic sensor must provide both appearance-based and 3D data;

• the depth accuracy of the 3D measurements must be about 10 cm;

• the maximum 3D range may be within 5− 7m;

• the sensor resolution and field of view depend on the demonstration scenarios.

A first analysis of disparity as a function of the depth is proposed in Figure 4.10, page 49
of Deliverable 3.2.

Three preliminary operations have been launched.

Tests with the dual stereo pair of the PR2 The head of the PR2 robot embeds a wide
stereo camera and a narrow stereo camera. The size and baseline of each pair may
constitute an admissible option for their mounting on the KEMAR head (see http://
pr2s.clearpathrobotics.com/wiki/PR2%20Manual/Chapter9#Head_Cameras).
Some evaluations have begun to characterize experimentally each stereoscopic pair in
view of the above criteria, by using GenoM3 and ROS modules available at CNRS
for image acquisition and processing on the PR2 robot.

1 V.R. Algazi, R.O. Duda, D.M. Thompson and C. Avendano, “The CIPIC HRTF Database”, IEEE
Workshop on Applications of Signal Processing to Audio and Electroacoustics, New Paltz, NY, 2001,
http://interface.cipic.ucdavis.edu/sound/hrtf.html.

2 http://sound.media.mit.edu/resources/KEMAR.html.
3 H. Wierstorf, M. Geier, A. Raake and S. Spors, “A Free Database of Head-Related Impulse Response

Measurements in the Horizontal Plane with Multiple Distances”, AES 130th Convention, 2011, https:
//dev.qu.tu-berlin.de/projects/measurements/wiki/2010-11-kemar-anechoic.
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8.1 Issues related to the KEMAR HATS

“Glasses” fitting closely on the KEMAR face Two preliminary designs of plastic “glasses”
which could fit closely on the KEMAR face and serve as a support of the stereoscopic
pair—with a baseline of approximatively 9 cm—have been obtained on the basis
of the CAD model of the KEMAR head. Once they are refined and if they prove
useful, they will be manufactured by 3D printing. The first design looks like a filled
“mask” (Figure 8.1). From this model, the design of “glasses” shown in Figure 8.2 has
been obtained. In both cases, an aluminium part supporting the cameras would be
attached to the front part in order to keep the stereo rig calibration insensitive to
temperature variations.

Spare cover to support a stereo rig In case anthropomorphic vision cannot be installed on
the KEMAR head (including on “glasses”), a clone of the KEMAR cover has also been
molded (Figure 8.3). The aim is to attach on it a support for a stereo rig without
altering the genuine KEMAR head.

8.1.4 Porting of the KEMAR head on PR2

The porting of the binaural/audiovisual KEMAR head (w/o the torso) on the PR2 robot is
in progress. Its position must be high enough with respect to the PR2 torso and shoulders
so as to minimize their effects on the sensed signals. So, it was decided to mount it on the
top of the PR2 head. Importantly, the mechanical assembly of the motorization system
(Figures 6.7 and 6.8 page 47) has been designed so as to come to an easy and repeatable
install.

As the KEMAR head momentum exceeds the admissible physical limitations on the PR2
payload, and in view of the fact that the tilt of the PR2 head can take important values
during initialization or emergency stop, it was decided to freeze this degree-of-freedom. As
already mentioned, tilt does not bring much to active motions. Contacts with ClearPath
Robotics have been taken so as to solve related technical problems, such as cancelling the
servocontrol of the tilt motion at startup while it is mechanically locked. The KEMAR head
will be mounted on the PR2 head once the firmware is updated by ClearPath Robotics so
that only translation and azimuthal degrees-of-freedom are kept.

In humans, it is known that the presence of a torso has the effect of increasing the acoustic
pressure in the vicinity of the ear up to frequencies of around 2 kHz Algazi et al. (2001),
with an effect greater for frontal sources than for lateral ones. Conversely, the shoulders
affect the same frequency range mainly for sources emitting from lateral positions. It is
then clear that the shoulders and torso both contribute to spatial effects. This should be
reproduced on the robotic system.

As a preliminary solution, an original PR2 cover has been designed, see its 3D picture in
Figure 8.4, and parts in Figure 8.5. This cover wraps around the robot upper part and
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8 Ongoing work and short-term prospects

Figure 8.1: Preliminary designs of a “mask” to support cameras on KEMAR head.

Figure 8.2: Preliminary designs of “glasses” to support cameras on the KEMAR head.

Figure 8.3: Molding of another cover for the KEMAR head, which could support a stereo rig.
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Figure 8.4: 3D view of the preliminary design of the PR2 cover.

two arms, which are not used in the project. Additionally, it can allow to minimize the
“self-noise” originating from the fans of the cooling system positionned at the bottom-back
of the robot. The cover is made of two parts in order to ease its fastening and removal.
All mechanical connections between these two parts and the robot are made of soft plastic
to avoid the propagation and the possible amplification of vibrations during robot motion.
The cover material has not been definitely chosen. A balance between weigtht, rigidity,
resistance, cost and ease of manufacturing has to be found. The final design is expected
between months 13 and 18.

Note that the HRTFs of the KEMAR head will be significantly modified, and will have to
be re-identified.
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8.2 Other issues

8.2 Other issues

8.2.1 Visual data acquisition, streaming and processing

GenoM3 modules are needed for calibration, video acquisition and time-stamped streaming.
In view of the experience of CNRS on this aspect (availability of similar modules for many
types of cameras, etc.), and as Two!Ears does not raise additional contraints on such
functions, they should be shortly deployed.

Functions for visual perception of persons and objects will be deployed on the basis of
existing algorithms developed locally at CNRS and after extensive evaluation of available
off-the-shelf ROS stacks (collections of modules). These functions will first concern
detection, segmentation and tracking. Semantic labeling will come during the second part
of year 2.

8.2.2 Work at the intersection of other workpackages and WP5

During year 1, extensive evaluations of the automatic generation of standalone C code were
conducted, by means of the MATLAB coder , for a subset of functions from the MATLAB -
based Auditory Modeling toolbox , which have also been integrated in the Auditory Front
End (AFE) of Two!Ears. The aim was to recast in C/C++ some of the WP2-related
low-level audio processing functions developed in MATLAB , and to further encapsulate
the obtained library into GenoM3 modules for real time, concurrent execution with other
functions. Unfortunately, it was shown that this automatic transcription process generates
a large number of files, and often fails.

The selection of parts from the WP2 development system and their transcoding into
GenoM3 modules from scratch will be conducted in year 2, as it is an essential need to
adress large scale experiments with good performance.

Discussions about whether auditive (from WP2) or visual (from WP3) functions could be
embedded in a hardware-software “System-on-a-Programmable-Chip” (SoPC) architecture
for high-performance data acquisition and low-level processing are underway within the
consortium. Preliminary evaluations of the Zedboard development board were conducted in
order to prepare hardware-software co-design of such smart sensors.
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8 Ongoing work and short-term prospects

8.3 Scientific work

Last, CNRS has been designing a three-layer strategy—developed independently of the
project—to source localization from a binaural head by combining the binaural perception
and the sensor motion: (A - “short-term detection”) estimation of the spatial arrangement
of active sources—possibly with the detection of their number—from the analysis of
the binaural stream over small time snippets; (B - “audio-motor binaural localization”)
assimilation of these data over time and combination with the motor commands of the
sensor, so as to get a first level of active localization; (C - “information-based feedback
control”) feedback control of the sensor motion so as to improve the fusion performed in
stage (B).

The two first layers have been prototyped in MATLAB and implemented in C/C++. They
are in the process of being encapsulated into GenoM3 and extensively evaluated, so as to
be brought to Two!Ears.

This work contributed to the publications Portello et al. (2014a,b), Blauert et al. (2014) and
to the submissions Blauert et al. (submitted, 2014), Bustamante et al. (2015, submitted,
invited paper).
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9 Appendix

This appendix contains several complement references to the main text. In particular,
additional information about GenoM3 , such as installation instructions and examples of
modules, is provided.

9.1 The BSD 3-Clause License

The BSD-3 Clause Licence, used for the copyright of developed material, is shown below.
The template used for this licence was taken from the
url: http://opensource.org/licenses/BSD-3-Clause.

Copyright (c) 2014, LAAS/CNRS
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
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9 Appendix

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

9.2 Guidelines to GenoM3 install and associated tools

9.2.1 Introduction to the installation process

The best way to install GenoM3 , the genomix server, the Tcl client and even the
demo module (Section 4.3.3) is through robotpkg , a compilation framework for installing
robotic software, initiated at CNRS . The recommended setup is to have robotpkg in
/home/username/robotpkg and to install any robotic software in a folder
/home/username/openrobots on the Hierarchical File System. This location ensures
that the user can install and run software without root privileges.

9.2.2 Installation instructions

The following simple procedure was defined for installing ROS middleware, together
with the GenoM3 generator of modules and associated tools of the Two!Ears software
architecture.

*** INSTALLATION INSTRUCTIONS ***

CONTENTS
1. INSTALL ROS
2. INSTALL ROBOTPKG
3. INSTALL GENOM3
4. INSTALL GENOMIX AND TCL CLIENT
5. COMPILE AND RUN A GENOM3 COMPONENT
6. INSTALL MORSE

NOTE: You need a Unix system, e.g. Ubuntu-12.04 (other systems have not been
tested).
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9.2 Guidelines to GenoM3 install and associated tools

1. INSTALL ROS -----------------------------------------------------------------

Prerequisites: none.

Install ROS groovy, you only need the ros-dekstop package. For Ubuntu-12.04
this is done as follows (instructions from
http://wiki.ros.org/groovy/Installation):

> sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu precise main" >
/etc/apt/sources.list.d/ros-latest.list'

> wget http://packages.ros.org/ros.key -O - | sudo apt-key add -
> sudo apt-get update
> sudo apt-get install ros-groovy-desktop

Setup your environment for ROS. With bash, edit your shell startup file
(~/.bashrc) and add this line:

source /opt/ros/groovy/setup.bash

2. INSTALL ROBOTPKG ------------------------------------------------------------

Prerequisites: none.

Configure robotpkg.
> cd
> git clone git://git.openrobots.org/robots/robotpkg

(if you cannot clone the repository, try using this url:
> git clone https://git.openrobots.org/robots/robotpkg.git)

> cd robotpkg/bootstrap
> ./bootstrap --prefix ${HOME}/openrobots

Checkout robotpkg/wip.
> cd ~/robotpkg
> git clone git://git.openrobots.org/robots/robotpkg/robotpkg-wip wip

Setup your environment for robotpkg. With bash, edit your shell startup file
(~/.bashrc) and add those lines:

export INSTALL_DIR=$HOME/openrobots
export PATH=$PATH:$INSTALL_DIR/bin:$INSTALL_DIR/sbin

75



9 Appendix

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$INSTALL_DIR/lib/pkgconfig
export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:$INSTALL_DIR/src/ros-nodes:

$INSTALL_DIR/share
export PYTHONPATH=$PYTHONPATH:$INSTALL_DIR/lib/python2.7/site-packages:

$INSTALL_DIR/lib/python3.2/site-packages

3. INSTALL GENOM3 --------------------------------------------------------------

Prerequisites: (1.) & (2.).

Installation of GenoM3 is made by installing the demo-genom3 software that
needs all the GenoM3 dependencies.

Add these lines to ${HOME}/openrobots/etc/robotpkg.conf (add them anywhere in
the file, but near the beginning makes more sense):

PKG_OPTIONS.demo-genom3= codels
PKG_OPTIONS.demo-genom3+= pocolibs-server pocolibs-client-c
PKG_OPTIONS.demo-genom3+= ros-server ros-client-ros ros-client-c
PREFER_ALTERNATIVE.ros = groovy

Then install the demo-genom3 software:
> cd ~/robotpkg/wip/demo-genom3
> make update

During the install, robotpkg may encounter missing system dependencies. They
are normally easily installed with "apt-get install <package>" (Ubuntu and
Debian likes), where <package> is suggested by robotpkg in its error message.
After any new dependency installation, just repeat the "make udpate" command
until it succeeds. If eveything goes well, you should see the message
"Done install for demo-genom3-1.1~...".

4. INSTALL GENOMIX AND TCL CLIENT ----------------------------------------------

Prerequisites: (1.) & (2.) & (3.).

Install wip/genomix and one last package in wip/tcl-genomix that can be used
to control the component, the TCL client:

> cd ~/robotpkg/wip/genomix
> make update
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> cd ~/robotpkg/wip/tcl-genomix
> make update

If you succeeded, you should have at least these packages installed:
genom3-2.99.22
tcl-genomix-1.2
genom3-pocolibs-1.5
genom3-ros-1.7
genomix-1.4

Check with this command:
> robotpkg_info -I '*genom*'

5. COMPILE AND RUN A GENOM3 COMPONENT ------------------------------------------

Prerequisites: (1.) & (2.) & (3.) & a GenoM3 component ready to be compiled.

These guidelines are for compiling a GenoM3 component with ROS templates.
(More information: https://git.openrobots.org/projects/genom3/wiki/Compiling).

Go to the directory where the genom module you want to compile is. Let's say
the module name is foo for this example. The folder should at least contain a
foo.gen description file and a folder codels/ with the code.
To compile the module, enter the following commands:

> genom3 skeleton -i foo.gen
> ./bootstrap.sh
> mkdir build
> cd build
> ../configure --prefix=$INSTALL_DIR --with-templates=

ros/server,ros/client/c,ros/client/ros
> make
> sudo make install

To run the module, first launch roscore:
> roscore &

Then run it:
> foo-ros -b

(The -b option is for running the module in background).

6. INSTALL MORSE ---------------------------------------------------------------
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Prerequisites: (1.) & (2.).

There are several ways to install Morse, these guidelines will install it
through robotpkg. (More information:
http://www.openrobots.org/morse/doc/latest/user/installation.html).

Morse uses Blender as graphics engine, you need to get it first:
> sudo apt-get install blender

Install Morse with ROS support.
Open the file ~/robotpkg/simulation/morse/Makefile and find the line:

CMAKE_ARGS+= -DBUILD_ROS_SUPPORT=OFF
Turn ROS support ON by replacing OFF by ON. Then, you can install morse:

> cd ~/robotpkg/simulation/morse
> make update

During the install, robotpkg may encounter missing system dependencies. They
are normally easily installed with "apt-get install <package>" (Ubuntu and
Debian likes), where <package> is suggested by robotpkg in its error message.
After any new dependency installation, just repeat the "make udpate" command
until it succeeds.

For ROS support, a few other packages need to be installed (More information:
http://www.openrobots.org/morse/doc/latest/user/installation/mw/ros.html).
The following instructions will download files and install the packages. For
each instruction block, you can choose a place to download the files before
completing the instructions. At the end, if your installation succeded, you
can choose to remove the downloaded files if you do not want to keep them.

> wget http://python-distribute.org/distribute_setup.py
> sudo python3 distribute_setup.py

> git clone git://github.com/ros/rospkg.git
> cd rospkg
> sudo python3 setup.py install

> git clone git://github.com/ros-infrastructure/catkin_pkg.git -b 0.1.9
> cd catkin_pkg
> sudo python3 setup.py install

> git clone git://github.com/ros/catkin.git
> cd catkin
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> sudo python3 setup.py install

You can check if the installation is OK by running:
> morse check

You should see "Your environment is correctly setup to run MORSE."

9.3 Examples for GenoM3 : a session with the Tcl client and a
toy module

9.3.1 Sample of a session with the Tcl client

Here is an example of blocking and non-blocking calls on the demo module (Section 4.3.3)
with the Tcl client.

# Calling the GotoPosition service in a blocking way
eltclsh > ::demo::GotoPosition 1
# The service blocks the calling routine, until it is done. Its output is then
# returned (the GotoPosition actually has no output, so nothing is returned).

# Calling the GotoPosition service in a non-blocking way
eltclsh > ::demo::GotoPosition 1 &
::demo::0 # Returned is a command for retrieving the output of this call

# later. The 0 in ::demo::0 is the request ID associated to this
# request.

eltclsh > # The calling routine can enter new commands directly.

# Making a new non-blocking call
eltclsh > ::demo::GotoPosition 0 &
::demo::1 # As the output of service 0 has not been retreived, the request ID

# 0 is not available. This call takes request ID 1.

# Getting the output of service 0
eltclsh > ::demo::0
# Again, as the GotoPosition service has no output, nothing is printed.
# The request ID 0 has now been cleaned. If a new call is made, it will take
# request ID 0 as it is now available.
# If the command to get the output of a service is called but the service is
# not done yet, a message tells that the request is still in progress. The
# request ID is not freed and the command is still available until the service
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# is done. To sum up, a called service can have two status: "sent" or "done"
# ("done" can also be "error", meaning that the service is done and did not
# ended properly. It is the case when the service is interrupted by another one
# for instance).

9.3.2 A toy module

Features

Consider the design of a simple countserver (server) module that increments a counter
on a regular time basis, and another countclient (client) module that connects to it, gets
the value of the counter, and displays its value.

The specification of the server module is available in the file countserver.gen. The pro-
vided services are as follows. The counting activities run within a task named count_task
which initializes the internal counter at 0 and then executes the codels on a periodic basis
(500ms).

CountStart An activity that triggers the counter from its current value.

CountFrom An activity to count from a value passed as input parameter of this service.

CountStop A function that interrupts the CountStart or the CountFrom activity. The two
activities also interrupt each other. Note that the corresponding code is automatically
generated from the .gen specification.

SetSpeed An attribute to set the counting speed. Four paces are available: the counter
can be incremented or decremented by 1 or by 10 at each period.

GetSpeed An attribute to get the current counting speed.

The countserver module has an out port that publishes the current value of the
counter, see file countserverinterface.gen. The countclient module is specified in
countclient.gen. It has an in port which must be connected to the out port of
countserver.

The countclient module just prints the received value on the screen, and proposes no
service. Its internal task, display_task wakes up at every 1000ms. This way, the effect
of the selection of the respective periods of the two modules can be easily seen (e.g., so
that only one value of the counter out of two is displayed).
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Specification files

Server: countserver.gen

/********************************************************************************
countserver/countserver.gen: The .gen file for the counting module.
It declares a counting task with a period of 500 ms. The services CountStart
and CountFrom allow to control the behaviour of the counter. The values for the
counter and its speed are stored in the IDS.
********************************************************************************/

#include "countserverinterface.gen"

component countserver {
/* Module properties */
version "1.0";
email "tforgue@laas.fr";
lang "c";
provides countserverinterface;

/* IDS declaration */
ids {

countserverinterface::Counter idsCounter;
countserverinterface::Speed idsSpeed;

};

/* Exceptions declaration */
exception INVALID_SPEED;
exception INVALID_INITIAL_VALUE;

/* Execution task declaration */
task count_task {

period 500ms;
stack 4000;
codel <start> start_count_task(inout ::ids, port out CounterPort)

yield ether;
};

/* Attributes declaration */
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attribute SetSpeed (in idsSpeed) {
doc "Sets current speed value";
validate ControlSpeed(local in idsSpeed);
throw INVALID_SPEED;
};

attribute GetSpeed (out idsSpeed) {
doc "Gets current speed value";
};

attribute GetInitial (out idsCounter.initial) {
doc "Gets counter's initial value";
};

attribute GetCurrent (out idsCounter.current) {
doc "Gets counter's current value";
};

/* Services declaration */
activity CountStart () {

task count_task;
doc "Starts the counter";
interrupts CountStart, CountFrom;
codel <start> csStart() yield exec;
codel <exec> csExec(inout ::ids, port out CounterPort) yield exec, stop;
codel <stop> csStop() yield ether;
};

activity CountFrom (in short initial_value) {
task count_task;
doc "Starts the counter from given value";
validate ControlInitValue(in initial_value);
throw INVALID_INITIAL_VALUE;
interrupts CountStart, CountFrom;
codel <start> cfStart(in initial_value, inout::ids,
port out CounterPort) yield exec;
codel <exec> cfExec(inout ::ids, port out CounterPort) yield exec, stop;
codel <stop> cfStop(inout ::ids, port out CounterPort) yield ether;
}
;
function CountStop () {
doc "Stops the counter";
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interrupts CountStart, CountFrom;
};

};

Server: countserverinterface.gen

/***************************************************************************
countserver/countserverinterface.gen: port and structures declarations.
The port publishes the current value of the counter and its initial value.
***************************************************************************/

interface countserverinterface {
/* Structures declaration */
struct Counter {
short initial;
short current;
};

enum Speed {
FASTBWD, SLOWBWD, SLOWFWD, FASTFWD
};

/* Ports declaration */
port out Counter CounterPort;
};

Client: countclient.gen

/***************************************************************************
countclient/countclient.gen: The .gen file for the display module.
It declares a displaying task with a period of 1000ms. This module has no
services, it simply runs a state-machine with codels for the task directly.
***************************************************************************/

#include "../countserver/countserverinterface.gen"
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component countclient {
version "1.0";
email "tforgue@laas.fr";
lang "c";
uses countserverinterface;

task display_task {
period 1000ms;
stack 4000;

codel <start> start_display_task() yield exec;
codel <exec> exec_display_task(port in CounterPort) yield exec, ether;

};
};

9.4 Standalone client

In preparation to writing a MATLAB client of GenoM3 (section 4.2.2), consider the design
of a simple standalone client program using the generic C client library. The main aspects
of the program are the following:

• The program is a shell program interacting with the user: it prompts him/her to
choose a service he/she wants to call, among those proposed by the loaded modules.

• The module’s dynamic libraries are loaded with the dlopen(3) function.

• The main function is made of an event loop, polling on a set of file descriptors (with
poll(2)), one for each loaded module, and an additional one for the keyboard input
from the user.

• Inputs to services are written by the user as JSON 1 objects.

• Simple callbacks functions are declared for being executed when a service is sent and
when it is done.

1 JavaScript Object Notation. c.f. http://json.org/

84

http://json.org/


9.5 Specification (.gen files) of the developed GenoM3 modules

9.5 Specification (.gen files) of the developed GenoM3
modules

9.5.1 audio stream server

component capture {
version "1.1";
lang "c";
require "genom3 >= 2.99.24";
provides captureinterface;

/* ---Exceptions declaration--- */
exception INVALID_CHUNK_TIME;
exception ERROR_SEQUENCE_ENOMEM;

/* ---IDS declaration--- */
native alsaParams_t;
ids {

string device;
unsigned long transfer_rate;
unsigned long chunk_time;
unsigned long Port_chunks;
alsaParams_t params;
capture::chunk_t current_chunk;

};

/* ---Task declaration--- */
task retrieve_data {

codel <start> start_retrieve_data(inout ::ids) yield ether;
codel <stop> stop_retrieve_data(inout ::ids) yield ether;

};

task socket {
period 5ms;
priority 200;
stack 4000;

codel <start> sInitModule() yield ether;
};
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/* ---Services declaration--- */
activity StartCapture(

in string device = "hw:1,0" : "Name of the sound device",
in unsigned long transfer_rate = 44100 : "Sample rate in Hz",
in unsigned long chunk_time = 50 : "Size of transfer chunks in

miliseconds",
in unsigned long Port_chunks = 20 : "Size of the Port in number

of chunks") {
task retrieve_data;
throw INVALID_CHUNK_TIME, ERROR_SEQUENCE_ENOMEM;
validate controlChunkTime(local in transfer_rate, local in chunk_time);

codel <start> scStart(inout ::ids, local in device,
local in transfer_rate, local in chunk_time,
local in Port_chunks, port out Port)
yield exec, ether;

async codel <exec> scExec(inout ::ids, port out Port) yield exec, stop;
codel <stop> scStop(inout ::ids) yield ether;

};

function StopCapture() {
interrupts StartCapture;

};

attribute GetCaptureConfig(out device, out transfer_rate,
out chunk_time, out Port_chunks);

activity DedicatedSocket() {
codel <start> initModule() yield ether, recv;
async codel <recv> Transfer(in ::ids, port in Port) yield recv, ether;

task socket;
};

activity CloseSocket(){
codel <start> closeSocket() yield ether;
task socket;

};
};
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9.5.2 KEMAR motorization

component kemar {
version "1.0";
lang "c";
require "genom3 >= 2.99.24";

task motion {
codel <start> motionStart() yield ether;
codel <stop> motionStop() yield ether;

};

/*Current Position: Displays on screen and/or publshes the current
position on a port*/
activity CurrentPosition() {

task motion;

codel <start> cpStart() yield recvCP;
async codel <recvCP> cpWaitForData() yield recvCP, ether;

};

/*Control in Position: Move Absolute Position*/
activity MoveAbsolutePosition(in double target, in double velocity) {

task motion;

codel <start> mapStart() yield sendMAP;
codel <sendMAP> mapSend(in target, in velocity) yield recvMAP, ether;
async codel <recvMAP> mapWaitForData() yield sendMAP, recvMAP;

};

/*Control in Position: Move Relative Position*/
activity MoveRealtivePosition(in double target, in double velocity) {

task motion;

codel <start> mrpStart() yield sendMRP;
codel <sendMRP> mrpSend(in target, in velocity) yield recvMRP, ether;
async codel <recvMRP> mrpWaitForData() yield sendMRP, recvMRP;

};
};
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9.5.3 KEMAR and audio stream server merged

component capture {
version "1.0";
lang "c";
require "genom3 >= 2.99.24";
provides captureinterface;
codels-require "elmo-axis-libs";

port out kemar::state currentState;
port out kemar::position_audio_indexes_movement Indexes;

/* ---Exceptions declaration--- */
exception INVALID_CHUNK_TIME;
exception ERROR_SEQUENCE_ENOMEM;

/* ---IDS declaration--- */
native alsaParams_t;
ids {

string device;
unsigned long transfer_rate;
unsigned long chunk_time;
unsigned long Port_chunks;
alsaParams_t params;
capture::chunk_t current_chunk;

};

/* ---Task declaration--- */
task retrieve_data {

codel <start> start_retrieve_data(inout ::ids, port out StateCapture)
yield ether;

codel <stop> stop_retrieve_data(inout ::ids) yield ether;
};

task socket {
period 5ms;
priority 50;
stack 4000;

codel <start> sInitModule() yield ether;
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};

task motion {
codel <start> motionStart(port out Indexes) yield ether;
codel <stop> motionStop() yield ether;

};

task state {
period 2ms;
priority 400;
stack 4000;

codel <start> stateStart() yield sendS;
codel <sendS> sSend(port out currentState) yield recvS, sendS;
async codel <recvS> sWaitForData() yield sendS, recvS;

};

/* ---Services declaration--- */
activity StartCapture(

in string device = "hw:1,0" : "Name of the sound device",
in unsigned long transfer_rate = 44100 : "Sample rate in Hz",
in unsigned long chunk_time = 50 : "Size of transfer chunks in

miliseconds",
in unsigned long Port_chunks = 20 : "Size of the Port in number

of chunks") {

task retrieve_data;
throw INVALID_CHUNK_TIME, ERROR_SEQUENCE_ENOMEM;
validate controlChunkTime(local in transfer_rate, local in chunk_time);

codel <start> scStart(inout ::ids, local in device,
local in transfer_rate, local in chunk_time,
local in Port_chunks, port out Port, port out StateCapture)
yield exec, ether;

async codel <exec> scExec(inout ::ids, port out Port) yield exec, stop;
codel <stop> scStop(inout ::ids, port out StateCapture) yield ether;

};

function StopCapture() {
interrupts StartCapture;

};
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attribute GetCaptureConfig(out device, out transfer_rate,
out chunk_time, out Port_chunks);

activity DedicatedSocket() {
codel <start> initModule() yield ether, recv;
async codel <recv> Transfer(in ::ids, port in Port) yield recv, ether;

task socket;
};

activity CloseSocket(){
codel <start> closeSocket() yield ether;
task socket;

};

/*Homing: Calls kemarHoming(h) and k=KemarStructInit(h)*/
activity Homing() {

task motion;

codel <start> hStart() yield sendH;
codel <sendH> hSend() yield recvH, ether;
async codel <recvH> hWaitForData() yield sendH, recvH, ether;

};

/*Current Position: calls kemarGetInfo*/
activity CurrentPosition() {

task motion;

codel <start> cpStart() yield sendCP;
codel <sendCP> cpSend(port out currentState, port in Port)

yield recvCP, sendCP, ether;
async codel <recvCP> cpWaitForData() yield sendCP, recvCP;

};

/*Stop Current position*/
activity StopCurrentPosition() {

task motion;

codel <start> scpStart() yield ether;
};

/*Set Velocity: calls kemarSetGearVelRadS*/
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activity SetVelocity(in double velocity) {
task motion;

codel <start> svStart(in velocity) yield ether;
};

/*Move Absolute Position: calls kemarSetGearVelRadS, kemarSetGearPosAbsRad,
kemarWaitMsgValid*/
activity MoveAbsolutePosition(in double target) {

task motion;

codel <start> mapStart() yield sendMAP;
codel <sendMAP> mapSend(in target, port out Port, port out Indexes) yield

recvMAP, ether;
async codel <recvMAP> mapWaitForData() yield sendMAP, recvMAP;

};

/*Move Relative Position: calls kemarSetGearVelRadS,
kemarSetGearPosRelRad, kemarWaitMsgValid*/
activity MoveRealtivePosition(in double target) {

task motion;

codel <start> mrpStart() yield sendMRP;
codel <sendMRP> mrpSend(in target) yield recvMRP, ether;
async codel <recvMRP> mrpWaitForData() yield sendMRP, recvMRP;

};

/*Control in Speed (Reads Velocity to set): calls kemarSetGearVelRadS*/
activity ControlInSpeed(in double velocity) {

task motion;

codel <start> cisStart() yield sendCIS;
codel <sendCIS> cisSend(in velocity) yield recvCIS, ether;
async codel<recvCIS> cisWaitForData() yield sendCIS, recvCIS;

};
};
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9.5.4 Virtual PR2 on MORSE

component pr2_full{
version "1.0";
lang "c";
require "genom3 >= 2.99.24";

port out subscriber::head Port_head;
port out subscriber::position Port_gotoposition;
port out subscriber::l_arm Port_l_arm;
port out subscriber::r_arm Port_r_arm;
port out subscriber::torso Port_torso;
port in subscriber::sensor_msgs__Image Image;

exception INVALID_TORSO;

task PublishPort{
period 20ms;
priority 200;
stack 4000;

codel <start> InitModule() yield ether;
};

activity move_head(in double pan, in double tilt,
in double time_to_finish){

codel <start> cMove_Head(in pan, in tilt, in time_to_finish,
port out Port_head) yield ether;

task PublishPort;
};

activity go_to_position(in double x, in double y, in double w){
codel <start> cGo_To_Position(in x, in y, in w,

port out Port_gotoposition)
yield ether;

task PublishPort;
};
activity move_l_arm(in double l_shoulder_pan_joint,

in double l_shoulder_lift_joint,
in double l_upper_arm_roll_joint,
in double l_elbow_flex_joint,
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in double l_forearm_roll_joint,
in double l_wrist_flex_joint,
in double l_wrist_roll_joint,
in double time_to_finish){

codel <start> c_Move_Left_Arm(in l_shoulder_pan_joint,
in l_shoulder_lift_joint,
in l_upper_arm_roll_joint,
in l_elbow_flex_joint,
in l_forearm_roll_joint,
in l_wrist_flex_joint,
in l_wrist_roll_joint,
in time_to_finish,
port out Port_l_arm)

yield ether;
task PublishPort;

};
activity move_r_arm(in double r_shoulder_pan_joint,

in double r_shoulder_lift_joint,
in double r_upper_arm_roll_joint,
in double r_elbow_flex_joint,
in double r_forearm_roll_joint,
in double r_wrist_flex_joint,
in double r_wrist_roll_joint,
in double time_to_finish){

codel <start> c_Move_Right_Arm(in r_shoulder_pan_joint,
in r_shoulder_lift_joint,
in r_upper_arm_roll_joint,
in r_elbow_flex_joint,
in r_forearm_roll_joint,
in r_wrist_flex_joint,
in r_wrist_roll_joint,
in time_to_finish,
port out Port_r_arm)

yield ether;
task PublishPort;

};

activity move_torso(in double torso, in double time_to_finish){
codel <start> c_Move_Torso(in torso, in time_to_finish,

port out Port_torso) yield ether;

validate controlTorso(in torso);
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task PublishPort;
throw INVALID_TORSO;

};

task VideoCamera_RGBA{
period 49ms;
priority 200;
stack 4000;

codel <start> InitModule() yield ether;
};

activity receive_image(){
codel <start> vcRGBAReceive(port in Image) yield start;
task VideoCamera_RGBA;

};
};

9.5.5 Virtual KEMAR on MORSE

component morse_kemar{
version "1.0";
lang "c";
require "genom3 >= 2.99.24";

codels-require "opencv";

ids
{

double currentPosition;
};

port in subscriber::sensor_msgs__Image CameraL;
port in subscriber::sensor_msgs__Image CameraR;
port in subscriber::geometry_msgs__PoseStamped RobotPose;
port out subscriber::geometry_msgs__Twist RobotMotion;

task ReceiveImage{
period 20ms;
priority 200;
stack 4000;
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codel <start> InitPublishPort() yield ether;
};

task Motion
{

period 20ms;
priority 300;
stack 4000;
codel <start> InitMotion() yield ether;

};

task Position
{

period 1ms;
priority 100;
stack 4000;
codel <start> InitPosition(inout ::ids) yield ether;
//codel <getpos> pGetPosition(port in RobotPose, inout ::ids) yield getpos;

};

activity Receive(){
codel <start> rReceive(port in CameraL, port in CameraR) yield start;
task ReceiveImage;

};

activity Rotate(in double z){
codel <start> mRotate(in z, port out RobotMotion, port in RobotPose) yield ether;
task Motion;

};

/*Control in Position: Move Absolute Position*/
activity MoveAbsolutePosition(in double target, in double velocity) {

task Motion;

codel <start> mapStart() yield sendMAP;
codel <sendMAP> mapSend(in target, in velocity, port in RobotPose,
port out RobotMotion) yield sendMAP, recvMAP, ether;
async codel <recvMAP> mapWaitForData(in target, in velocity,
port in RobotPose, port out RobotMotion) yield sendMAP, recvMAP;

};

/*Control in Position: Move Relative Position*/
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activity MoveRelativePosition(in double target, in double velocity) {
task Motion;

codel <start> mrpStart(in target, in velocity,
port in RobotPose, port out RobotMotion) yield ether;

};

/*Control in Speed*/
activity ControlInSpeed(in double velocity) {

task Motion;

codel <start> cisStart(in velocity, port out RobotMotion)
yield ether;

};
};

9.6 Low-level libraries used for the control of the KEMAR

The Kemar library
Function Description Calls
kemarHoming Initalizes a homing proccedure

to detect RLS (Reverse Limit
Sensor) and FLS (Fordward
Limit Sensor)

kemarHomingRegConfig Sets registers for homing
kemarInit Initializes CAN BUS, Harmon-

ica structure, Starts the motor
and Initializes Homing

socketcanInit,
socketcanEnd,
harmonicaInitCtrl and
harmonicaStart

kemarSwitchesInit Sets internal bits as RLS and
FLS

kemarWaitMsgValid Wait loop and requests mes-
sages generation

socketcanReceiveMsgWait

kemarStructInit Initializes the Kemar Head
structure (programming)

kemarStructEnd Ends the communication with
the motor controller

kemarSetGearPosAbsRad Sets an absolute position in Ra-
dians for Control in Position
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kemarSetGearPosRelRad Sets a relative position in Ra-
dians for Control in Position

kemarSetGearVelRadS Sets a speed in Radians/Sec for
Control in Position and Speed

kemarSetEncPosAbsIncr Sets an absolute position in In-
crements for Control in Posi-
tion

kemarSetEncPosRelIncr Sets a relative position in Incre-
ments for Control in Position

kemarSetEncVelIncrS Sets a speed in Increments/Sec
for control in Position and
Speed

kemarSetGearPosAbsVelRadS Sets an absolute Position in
Radians and Velocity in Radi-
ans/Sec for control in Position

kemarSetGearPosRelVelRadS Sets a relative Position in Ra-
dians and Velocity in Radi-
ans/Sec for control in Position

kemarSetEncPosAbsVelIncrS Sets an absolute position in In-
crements and Velocity in Incre-
ments/Sec for Control in Posi-
tion

kemarSetEncPosRelVelIncrS Sets an relative position in In-
crements and Velocity in Incre-
ments/Sec for Control in Posi-
tion

kemarSetMotionType Sets motion type dynamically
kemarGetInfo Requests position, speed and

status

Table 9.1: The Kemar library
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The Harmonica library
Function Description Calls
harmonicaInit Initializes communication with

the motor controller
socketcanTransmitMsg

harmonicaInitCtrl Requests initialization of the
motor controller

intprtSetInt Send a command to the byte
interpreter

socketcanTransmitMsg

harmonicaSetMotionType Sets the bytes according to con-
trol in Position or Velocity

harmonicaRequestStatus Requests status from the mo-
tor controller

estimVel Computes a velocity estima-
tion, based on the position dif-
ference

evalStatusRegister Interprets the contents of the
controller’s status register

evalMotorFailure Interprets motor failure error
codes

harmonicaEnd Ends the communication with
the motor controller and frees
memory

harmonicaStart Starts the motor controller
harmonicaStop Shuts down the motor con-

troller
harmonicaReset Resets the motor controller
harmonicaSetGearPosVelRadS Requests a given position and

velocity and asks for data up-
dates

socketcanTransmitMsg

harmonicaSetGearVelRadS Requests a given velocity and
asks for data updates

socketcanTransmitMsg

harmonicaSetGearVelIncr Requests a given velocity and
asks for data updates

socketcanTransmitMsg

harmonicaGetPosRad Requests for current position
harmonicaDecode Decodes CAN messages sent

by the motor’s controller
canMsgGetInt

note: The Harmonnica library interfaces with the ELMO Harmonica motor controller

Table 9.2: The Harmonica library
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The Socketcan library
Function Description Calls
socketcanInit Initializes the communication

with the CAN bus controller
socketcanEnd Ends the communication with

the CAN bus controller
socketcanTransmitMsg Send a message on the BUS
socketcanReceiveMsgWait Waits for a message and re-

cieves it
socketcanReceiveMsg Non-Blocking checks for next

message and recieves it
canMsgSet Imitializes a CAN message
canMsgGetInt Extracts a little-endian 32 bit

intiger from a CAN message at
given offset

canMsgGetFloat Extracts a float from a CAN
message at given offset

canMsgShow Displays the raw contents of a
CAN message on stdout

note: The Socketcan library interfaces with the linux socket CAN layer

Table 9.3: The Socketcan library
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