
FP7-ICT-2013-C TWO!EARS Project 618075

Deliverable 2.1

WP2 Software Architecture

WP2 ∗

May 29, 2014

∗ The Two!Ears project (http://www.twoears.eu) has received funding from the European
Union’s Seventh Framework Programme for research, technological development and demon-
stration under grant agreement no 618075.

(http://www.twoears.eu)

Project acronym: Two!Ears
Project full title: Reading the world with Two!Ears

Work packages: WP2
Document number: D2.1
Document title: WP2 software architecture
Version: 1

Delivery date: 29 May 2014
Actual publication date: 29 May 2014
Dissemination level: Restricted
Nature: Report

Editor: Guy Brown
Author(s): Guy Brown, Remi Decorsière, Dorothea Kolossa, Ning Ma,

Tobias May, Christopher Schymura, Ivo Trowitzsch
Reviewer(s): Jonas Braasch, Dorothea Kolossa, Bruno Gas, Klaus Ober-

mayer

Contents

1 Executive summary 1

2 Overview of the Two!Ears software architecture 3
2.1 Background . 3
2.2 Software architecture . 4
2.3 Overview of the report . 6

3 Bottom-up auditory signal processing 7
3.1 Software design . 7

3.1.1 Processors . 7
3.1.2 Manager . 9
3.1.3 Data organization . 10
3.1.4 General overview . 12

3.2 Handling user requests . 13
3.2.1 Dependencies . 13
3.2.2 Feedback . 14

3.3 Available processors . 16
3.3.1 Signals . 16
3.3.2 Cues . 18

3.4 Planned extensions to the software . 19

4 Reference 21
4.1 WP2 reference . 21

Acronyms 23

Bibliography 25

iii

1 Executive summary

The goal of the Two!Ears project is to develop an intelligent, active computational model
of auditory perception and experience in a multi-modal context. At the heart of the project
is a software architecture that optimally fuses prior knowledge with the currently available
sensor input, in order to find the best explanation of all available information. Top-down
feedback plays a crucial role in this process. The software architecture will be implemented
on a mobile robot endowed with a binaural head and stereo cameras, allowing for active
exploration and understanding of audiovisual scenes.

This deliverable sets out the design of the software architecture, with an emphasis on
communication between the components of the system. An object-oriented approach is used
throughout, giving benefits of reusability, encapsulation and extensibility.

The first stage of the system architecture concerns bottom-up auditory signal processing,
which transforms the signals arriving at the binaural head into auditory cues. Bottom-
up signal processing is implemented as a collection of processor modules, which are
instantiated and routed by a manager object. This affords great flexibility, and allows
real-time modification of bottom-up processing in response to feedback from higher levels of
the system. Processor modules are provided to compute cues such as rate maps, interaural
time and level differences, interaural coherence, onsets and offsets.

This deliverable describes the aspects of the software architecture developed in work
package two. A more complete account of the software architecture is given in deliv-
erable D3.1, including a description of the blackboard system and a proof of concept
study.

1

2 Overview of the Two!Ears software
architecture

This report documents the design of the Two!Ears software architecture and describes
the motivation for the approach taken. Our approach is to first describe the software
architecture in general terms. A specific example of applying the architecture to a
computational hearing problem is then given; specifically, the problem of localising and
identifying a single sound source under conditions in which front/back confusions must be
resolved.

2.1 Background

The goal of the Two!Ears project is to develop an intelligent, active computational model
of auditory perception and experience in a multi-modal context. In order to do so, the system
must be able to recognise acoustic sources and optical objects, and achieve the perceptual
organisation of sound in the same manner that human listeners do. Bregman (1990) has
referred to the latter phenomenon as auditory scene analysis (ASA), and to reproduce this
ability in a machine system a number of factors must be considered:

• ASA involves diverse sources of knowledge, including both primitive (innate) grouping
heuristics and schema-driven (learned) grouping principles;

• Solving the ASA problem requires the close interaction of top-down and bottom-up
processes through feedback loops;

• Auditory processing is flexible, adaptive, opportunistic and context-dependent.

The characteristics of ASA are well-matched to those of blackboard problem-solving ar-
chitectures. A blackboard system consists of a group of independent experts (‘knowledge
sources’) that communicate by reading and writing data on a globally-accessible data
structure (‘blackboard’). The blackboard is typically divided into layers, corresponding to
data, hypotheses and partial solutions at different levels of abstraction. Given the contents
of the blackboard, each knowledge source indicates the actions that it would like to perform;
these actions are then coordinated by a scheduler, which determines the order in which

3

2 Overview of the Two!Ears software architecture

actions will be carried out.

Blackboard systems were introduced by Erman et al. (1980) as an architecture for speech
understanding, in their Hearsay-II system. In the 1990s, a number of authors described
blackboard-based systems for machine hearing (Cooke et al., 1993, Lesser et al., 1995, Ellis,
1996, Godsmark and Brown, 1999). All of these systems were in most respects ‘conventional’
blackboard architectures, in which the knowledge sources consisted of rule-based heuristics.
In contrast, the Two!Ears architecture aims to exploit recent developments in machine
learning, by combining the flexibility of a blackboard architecture with powerful learning
algorithms afforded by probabilistic graphical models.

2.2 Software architecture

The diagram of the general software architecture is shown in Figure 2.1. The acoustic input,
which consists of the left and the right-ear time domain signals captured by the robotic
platform, is processed by a peripheral processing module that simulates the effective signal
processing in the auditory system. The significance of this task lies in the extraction of
meaningful signals and cues that capture important aspects of the acoustic scene, which
will enable the higher processing stages of the architecture to interpret the acoustic scene.
Therefore, the two time domain signals are processed independently by a monaural pathway,
which consists of a middle ear and a cochlear module. In addition, a binaural processor
compares the two monaural signal streams in order to evaluate interaural differences between
the left and the right ear signal representations. Based on these monaural and binaural
signal representations, a number of monaural and binaural cues are extracted. These
cues describe and summarize relevant characteristics of the monaural and binaural signal
representations over short time frames. In contrast to purely signal-driven (bottom-up), and
therefore static approaches, the Two!Ears software architecture explicitly incorporates
task-dependent feedback.

In addition, video signals are captured by cameras on the robotic platform. The output
from the first stage of processing is then a multi-dimensional, audiovisual representa-
tion of the environment which provides the input to subsequent stages of the architec-
ture.

Later stages of the Two!Ears architecture are broadly based on the HEARSAY-II system
(Erman et al., 1980). A number of knowledge sources (KS) collaborate via the blackboard,
by triggering when relevant data is available and depositing new data. The architecture
is event-driven; a change in the state of the blackboard (such as the arrival of new data,
or the emergence of a new hypothesis) causes an event to be broadcast. A blackboard
monitor is responsible for monitoring and handling these events; it maintains an event
register that indicates which KS can respond to a certain event. The possible actions that

4

2.2 Software architecture

Middle ear filter

Cochlea module

Monaural processor Binaural processor Visual processor

Knowledge Sources

Knowledge

Source

Knowledge

Source
... Knowledge

Source

Knowledge

Source

Knowledge

Source

Graphical model based dynamic blackboard

Layer 1

Layer 2

Layer n

...

Event register

Agenda

Blackboard monitor

Hypothesis generation

Events

Scheduler

Possible actions

Knowledge source

selection and action

Audio and video

signal acquisition

Robotic platform

Path planning

and movement

Middle ear filter

Cochlea module

Monaural processor

Peripheral processing

Acoustic input Acoustic input Visual input

Active exploration

A
c
tiv

e
 lis

te
n

in
g

Data flow

Figure 2.1: System diagram of the general software architecture

5

2 Overview of the Two!Ears software architecture

can be performed, given the current state of the blackboard, are listed in an agenda. A
scheduler is then responsible for ranking the possible actions and selecting one to perform.
When the action is performed, this will most likely result in a further change in the state
of the blackboard leading to the broadcast of further events.

Graphical models form a key part of the Two!Ears architecture, either as structures
on the blackboard or as the basis for knowledge sources. The architecture therefore has
the flexibility to combine rule-based and statistics-based information processing. The
blackboard is divided into layers of abstraction, such that an hypothesis at level n is
supported by evidence at level n− 1. At the highest level of the blackboard, the layers
constitute a ‘world model’ which describes the acoustic sources in the environment in terms
of their relationships, properties and meaning.

The Two!Ears architecture will be implemented on a robotic platform in due course,
allowing for active exploration of the environment. For example, hypotheses on the
blackboard about the location of a sound source of interest may trigger a path planning
action, which results in the robot moving closer to the source’s predicted location. Similarly,
planning actions may dictate that it is necessary for the robot to rotate its head in order
to gather more information.

Similarly, the Two!Ears architecture allows for active listening. Properties of the
bottom-up processing, such as the tuning characteristics of cochlear filters, can be modified
by top-down feedback from higher stages of the blackboard. Such feedback may occur at
multiple levels, including the interaction of binaural hearing and mobility at the sensorimotor
level. Reflexive movements of the robot, which occur without hypothesis-driven feedback
from the blackboard, may also occur.

Matlab has been chosen as the implementation language for the software architecture,
because it is widely available within Two!Ears partner laboratories, it supports object-
oriented programming, and can be run directly on the robot platform.

2.3 Overview of the report

In the remainder of this report, Section 3 describes the bottom-up auditory signal processing
techniques developed within work package two (WP2). Finally, Section 4 provides reference
material that will be helpful in using our Matlab implementation.

6

3 Bottom-up auditory signal processing

The task of WP2 is to transform the listener’s ear signals, that are supplied by work package
one (WP1), into a multi-dimensional signal and cue representation. In the following the
general software design is described in detail.

3.1 Software design

The processing stages of the WP2 software package, as well as the types of outputs it
provides, are essentially dependent on requests made by the software user. They are
subject to change not only between calls to the package (e.g., switching from scenario A to
scenario B), but also, and more importantly, during execution of the software (e.g., when
feedback from higher stages is received). Hence there is a strong incentive for the software
to be modular and able to adapt to potentially very different scenarios. This naturally
suggests an object-oriented approach in the implementation.

3.1.1 Processors

An object-oriented approach allows each processing stage (e.g., the computation of one cue
from a given signal) to be assigned to an independent “processor” object. The following two
fundamental properties of object-oriented programming can then benefit the modularity
of the implementation. Encapsulation allows these processors to be self-managed, and
most importantly independent of each other and of other existing objects. Inheritance
of individual processors from a parent processor class allows new processing stages to be
added and implemented with only a little new code writing (which is less likely to introduce
errors).

Parent and children processor classes

In practice, an abstract processor class is implemented, which will be the parent class
of all processors. It should therefore encapsulate all properties and methods that are
common to all processors. Figure 3.1 presents a class diagram for the Processor parent

7

3 Bottom-up auditory signal processing

Figure 3.1: Class diagram of the processor parent and children classes.

class as well as two example child classes. Properties that are common to all processors
include:

• a label (Type) to identify the action of the processor

• the sampling frequencies of the input (FsIn) and output (FsOut) that the processor
manipulates.

The additional property Dependencies is not required for the functioning of the individ-
ual processor, but its use simplifies the management of several processors and will be
described in Section 3.2. All child processors should then implement the following abstract
methods:

• processChunk which, given an input, computes and returns the corresponding output

• reset which resets the processor to a clean state, e.g., for processing a new signal

Again, as for the Dependencies property, the method hasParameters is not necessary but
will simplify some processes described later.

The bottom-up signal processing of WP2 involves many processing stages. Each stage can
then be implemented as a child of the Processor class. Figure 3.1 shows two example
children that inherit the Processor class. Inheritance is indicated in the class diagram by
a closed-head arrow. Each child can have additional properties that are relevant to the
processing it performs. For example the gammatoneProc which is responsible for performing
filtering by a Gammatone filterbank, in addition to the Processor properties, has to keep
track of the center frequencies of its channels (in Centerfreqs). Its processing also involves
a number of filters (see subsection below), which are stored as a property (Filters).

8

3.1 Software design

Other child processors will involve different properties of their own (e.g., the inner hair-cell
envelope extractor innerhaircellProc has an additional name tag IHCMethod for the
method employed). A detailed list of currently available (child) processors is given later in
this document (section 3.3).

Additional methods for child processors are essentially specific constructors. Different
processors need different information to be created, hence each child has its own constructor
which takes specific inputs.

Filter objects and real-time compatibility

Among the processors that are implemented, many involve some filtering operations. For
example the gammatoneProc and innerhaircellProc pictured in Fig.3.1 both involve
filtering and have “filters” stored as properties. These filters are also implemented as
objects, i.e., in a similar fashion as the processors, with a parent filter class and specialized
child filter classes. This approach can benefit significantly from encapsulation by storing
a filter’s internal state as one of its properties. By restricting the access of this property
to the filter object only (i.e., have it being a private property), the filter can self-manage
its internal state without any risk of being “contaminated” by any outside event. This
means that successive calls for filtering will take into account the filter’s states relative
to the previous call. Note that this makes the approach fully compatible with real-time
processing (i.e., the ability to process an incoming signal in a sequence of short blocks),
without additional effort. The filter object also includes a reset() method that will clear
its internal states, e.g., to initialize the processing for a new signal. When filter objects are
instantiated in a processor object, the reset() method of the processor essentially calls
the reset() method of all the filter instances it contains.

3.1.2 Manager

A given configuration of the WP2 software will involve several processing stages, hence
multiple processors. The processors have to be instantiated, and their inputs/outputs
routed according to which processor needs or generates which signal (or cue). This
is not done manually by the user but is instead handled by a dedicated object, the
“manager”.

The manager class (see Fig.3.2) contains instances of the processors needed for the overall
processing as the property Processors (e.g., as an array of individual Processor objects).
To know where to fetch the inputs for each processors, InputAddress contains a list of
pointers to the inputs of each processor. Similarly, OutputAddress indicates where to place
the output of a given processor. Because some processors take as input the output of other

9

3 Bottom-up auditory signal processing

Figure 3.2: Manager class diagram.

processors, the processing has to be ordered (we will return to this dependency issue in
section 3.2). The order in which processors are called is stored in Map.

Processing and routing of inputs/outputs is then carried on through the method processSignal.
This method loops over the total number of processors, calling the processChunk of each
of them, but one at a time. Assuming the signals are contained in data, for a given index
i, this breaks down to one line of code (here split on 4 lines for readability):

j = Map(i)
in = Manager.InputAddress(j)
out = Manager.OutputAddress(j)
data(out) = Manager.Processors(j).ProcessChunk(data(in))

The last line shows how processing and routing of inputs/outputs are performed all at once.
This operation is repeated for all the processors (i.e., all the indexes i).

So far, we described how the manager performs the processing in a “steady-state” execution.
The critical task of the manager is then to take into consideration user requests at the
initialization of the program as well as while the program is running (i.e., in that case,
when feedback is provided). These tasks are at the core of the “managing” tasks of the
manager object, and are described in the following (section 3.2).

3.1.3 Data organization

The last building block in the WP2 software concerns actual data. An object oriented
approach is also used for storing all the signals and cues that were extracted in the various
processing stages. In a similar way as the processor class described in section 3.1.1, a
general parent “signal” class is implemented. All the signals and cues resulting from WP2

10

3.1 Software design

processing are then implemented as children of this class. All existing signals are then
grouped in a single “data” object.

Signal class

Many signals of different nature are generated by the processing performed by the WP2
software. Although different signals have different properties (e.g., different dimensions,
different scaling, different sampling frequency/time-frame,...), they share common properties.
These common properties, as well as methods that all signal objects should have, are
presented in Fig. 3.3. Signal objects allways contain:

• a Label, which formally describe a given instance of the object (e.g., “Left ear signal”
or “Interaural level difference”). It is this label which is used, for instance, as a plot
title when plotting the signal.

• a Name, which is a name tag associated to this signal type (e.g., “time”, “innerhaircell”,
or “ILD”)

• a description of its Dimensions (e.g., “m channels x n samples”) to prevent inconsis-
tencies

• a sampling frequency FsHz

• the actual Data, stored as an array

Two methods are then common to all signals:

Figure 3.3: Signal parent and children classes.

11

3 Bottom-up auditory signal processing

• plot() which plots the signal. Because signals are of different dimensions, the method
is abstract at this point and needs to be implemented by each child class.

• appendChunk(data) which adds the new signal chunk data (e.g., a recently computed
output) to the already existing data.

Child signal classes inherit these properties and methods. They are implemented according
to their dimensionality. For example, Fig. 3.3 shows diagrams for the time domain signal
child class (e.g., used for a signal recorded at the ear) as well the time-frequency signal
child class (e.g., used for a gammatone filterbank output, a inner hair-cell envelope,...).
Specific child classes are then added for signals of a different nature.

Data object

Several signals of different nature are instantiated during the process of WP2. They are
all collected in a single instance of a dataObject. The manager class responsible for WP2
processing then interacts with this data object. Each property of the dataObject is a
Signal object. The name of the property is set by the signal property Signal.Name. For
example if an inner hair-cell representation is requested for a single signal, there will be
three properties in the dataObject:

• dataObject.time

• dataObject.gammatone

• dataObject.innerhaircell

If several signals with the same name exist they are collected in the same property, as an
array of objects. Apart from its constructor, the dataObject class only has one method,
addSignal(sig), which adds the signal object sig to its properties.

3.1.4 General overview

Figure 3.4 summarises the WP2 software design. A standard arrow denotes an interaction
(e.g., between the manager and the data object). An arrow ending with a filled diamond
shows a composite aggregation, i.e., the object touching the diamond embeds one or several
instances of the object at the other end of the arrow (e.g., the manager instantiates one or
more processors). The numbers by the arrows ends indicate the possible number of instances,
with ∗ being any integer (e.g., there can be one or more signal objects in the data object,
zero or more filters in a processor, but there is only one manager).

12

3.2 Handling user requests

Figure 3.4: Overall class diagram for WP2 software

3.2 Handling user requests

The manager class is responsible for instantiating processors, ordering the processing,
and routing inputs and outputs between processing stages. But it is not stand-alone, in
the sense that it will be prompted by a “user” to extract some internal representations.
In most scenarios, the “user” is of course not a physical person, but software from one
of the other work packages. Two prerequisites concerning the way a user can request a
given representation are crucial. First, the user should be allowed to request one single
representation without explicitly requesting the other representations necessary to compute
the original request. Second, requests are not only made at start-up, but should occur at
any time during processing. Practical solutions to these two problems are presented in the
following subsections.

3.2.1 Dependencies

As described above, a single processor object is responsible for only a single processing
stage. However a given signal will likely be derived from another signal, itself deriving
from yet another one. In other terms, there is a chain of dependencies between the existing
signals, and multiple processing stages are required to derive only a single signal. The
manager needs to know of these dependencies, and instantiate not only the processor
responsible of a requested signal, but also the processors needed for the signals it depends
on. It should also be aware of which order to call in the processors for generating an
output.

In practice, the instantiation of the processors occurs in the constructor of the manager
class. The constructor is called with a list of requested signals (manager(request,...) in
Fig. 3.2). This list does not explicitly state the dependent signals. Instead, the manager
calls an external function (getDependencies) that returns the full list of dependencies

13

3 Bottom-up auditory signal processing

for a given signal and instantiates the processors needed for each dependent signal. The
list returned by getDependencies can be ordered in decreasing order of dependency (i.e.,
increasing processing order), such that the mapping manager.Map can be initialized to
(1, 2, ..., nproc) where nproc is the total number of processors. As an example, say the
user requests the computation of level differences (ILDs). The ILDs depend on the inner
hair-cell envelope of the output of a Gammatone filterbank. The list of dependencies (as
returned by getDependencies) therefore looks like:

ild→ innerhaircell→ gammatone→ time

The processing order is given by the decreasing dependency order:

manager.Processors = {timeProc, gammatoneProc, innerhaircellProc, ildProc}

and the mapping Map is initialized to

manager.Map = {1, 2, 3, 4}

Additionally, when instantiating a processor, the manager will populate its processor.Dependencies
property with a pointer to the processor(s) that are one level below in terms of depen-
dency. For example, for the case above, innerhaircellProc.Dependencies will point to
gammatoneProc. This will help in dealing with feedback as is described in the following
subsection.

3.2.2 Feedback

A crucial point in the philosophy behind the Two!Ears framework is that the bottom-
up auditory processing should take into account decisions taken by higher-stage models.
The WP2 framework must therefore be designed to include such top-down feedback, and
evolve according to it. In practice, higher-stage feedback will be initiated by requesting a
change in parameters for one or more processing stages, or requesting a completely new
processing stage (e.g., extracting a new auditory feature). But this has to be done “on
the fly”, i.e., during execution of the processing and when the manager has already been
instantiated.

When a new processing stage is requested, the manager needs to assess whether or not
a processor corresponding to this request already exists. It should not only compare the
tasks of the processor, but also the particular parameters under which the processing is
carried. For instance, say the feedback is a request for an inner hair-cell representation
using the model ’dau’. If an inner hair-cell processor already exists but uses the method
’hilbert’, the manager has to be “aware” of this discrepancy and instantiate a new inner
hair-cell processor that would use the correct method.

14

3.2 Handling user requests

Request signal sig,
with parameters p

Manager has a
processor for

sig?

NO

Instantiate
processor

for this signal

Replace sig with
its first dependency

YES proc is the
processor for sig

Does proc have
parameters p?

NO

Add (proc, p) to a
toAdd list, replace
proc with its
dependency

YES

Is the toAdd
list empty?

YESNecessary
processors added

NO

Instantiate first
processor in the
toAdd list

Remove first
element of the
toAdd list

A B

C

Figure 3.5: Flowchart picturing the operations performed when feedback is received in order to
create adequate new processors. The feedback consists in a request for a signal sig with a set of
parameters p.

Further, if a processor corresponding to the request already exists, then the manager needs
to investigate if its dependencies also use the adequate parameters and if not instantiate all
the “missing” processors. In practice, the process is illustrated in Fig. 3.5. Three recursive
loops are present in the diagram of Fig. 3.5 marked as A, B, and C. The “user” request
consists of a signal name (sig) that should be computed using a set of parameters p. The
list of parameters p contains all the parameters for all the processing stages needed to
obtain sig. The first loop A resembles the process described in section 3.2.1, where a
given processor and its dependencies are instantiated. However it will stop when one of
the dependent processors already exists and moves on to loop B. Loop B verifies that
the already existing processor proc returned by loop A has the suitable parameters p.
If not, it needs to find the first of its dependent processors that does have the correct
parameters while keeping track of future processors to instantiate in a toAdd list. Loop C
then instantiates all the necessary processors.

In practice the operations carried out in the three loops A, B and C from Fig. 3.5 are
facilitated by the manager class methods hasProcessor and addProcessor, as well as
the hasParameters method from the processor class. Along with the instantiation of the
processors, the input/output addresses stored in the manager are updated (though not
shown on Fig. 3.5). New signals in the data structure are created for every new processor

15

3 Bottom-up auditory signal processing

that is instantiated, even if the new processor only computes an already existing signal,
only with a different parameter. This design limits confusion between processing stage and
signals in the data structure. However, as the framework develops and is used in more
complicated scenarios, solutions will have to be devised to avoid memory leaks by deleting
obsolete signals and processors.

3.3 Available processors

In the following a list of currently available processors is presented, together with their
corresponding Matlab function names. A distinction is made between the processors
that are used to extract signals and cues. The time, gammatone and inner hair cell (IHC)
signals are sample-based, whereas the correlation-based signals and all cues are computed
on the basis of short time frames. The frame size and the frame shift are general parameters
and can be controlled by the flags wSizeSec and hSizeSec, respectively. As discussed in
Sec. 3.2.1, the computation of a particular signal or cue will depend on the extraction of
other signals and cues. Therefore, an overview of the corresponding dependencies for all
supported signals and cues is given in Fig. 3.6.

Figure 3.6: Diagram showing the dependencies of individual signals and cues.

3.3.1 Signals

Time (timeProc.m)

The left and the right ear time domain signals can be pre-processed by resampling the
input to a new sampling frequency fsHz. In addition, the flag bRemoveDC can be used to

16

3.3 Available processors

activate a DC removal filter, which applies a 4th order Butterworth high-pass filter with a
cut-off frequency of 50Hz. Finally, the flag bNormRMS can be used to normalize the time
domain signal according to its root mean square (RMS) value. In case the input signal is
binaural, the larger RMS value will be used for normalization.

Gammatone (gammatoneProc.m)

The time domain signal is processed by a bank of gammatone filters that simulates the
frequency selective properties of the human basilar membrane (BM). The corresponding
Matlab function is adopted from the AMToolbox. An overview about the functional-
ity of the toolbox can be found in Søndergaard and Majdak (2013). The gammatone
filters cover a frequency range between flow and fhigh and are linearly spaced on the
equivalent rectangular bandwidth (ERB) scale (Glasberg and Moore, 1990). In addition,
the distance between adjacent filter center frequencies on the ERB scale can be specified
by nERBs, which effectively allows to control the frequency resolution of the gammatone
filterbank. The filter order, which determines the slope of the filter skirts, is set to n = 4
by default.

Inner hair cell (innerhaircellProc.m)

The IHC functionality is simulated by extracting the envelope of the output of indi-
vidual gammatone filters. The corresponding IHC function is adopted from the AM-
Toolbox. Typically, the envelope is extracted by combining half-wave rectification and
low-pass filtering. The cut-off frequency and the order of the corresponding low-pass
filter vary across methods and the following flags for ihcMethod are supported: Hilbert
transform ’hilbert’, half-wave rectification ’halfwave’, low-pass filtering ’dau’ (Dau
et al., 1996), and low-pass filtering, compression and expansion ’bernstein’ (Bernstein
et al., 1999).

Auto-correlation (autocorrelationProc.m)

Autocorrelation is an important computational concept that has been extensively studied
in the context of predicting human pitch perception (Licklider, 1951, Meddis and Hewitt,
1991). To measure the amount of periodicity that is present in individual frequency
channels, the normalized auto-correlation function (ACF) is computed based on the IHC
representation of the left and the right-ear signals.

For the purpose of pitch estimation, it has been suggested to modify the signal prior to
correlation analysis in order to reduce the influence of the formant structure on the resulting

17

http://amtoolbox.sourceforge.net/
http://amtoolbox.sourceforge.net/
http://amtoolbox.sourceforge.net/

3 Bottom-up auditory signal processing

ACF (Rabiner, 1977). This pre-processing can be activated by the flag bCenterClip and
the following nonlinear operations can be selected for ccMethod: center clip and compress
’clc’, center clip ’cc’, and combined center and peak clip ’sgn’. The percentage of
center clipping is controlled by the flag ccAlpha, which sets the clipping level to a fixed
percentage of the frame-based maximum signal level.

Cross-correlation (crosscorrelationProc.m)

The IHC representations of the left and the right ear signals are used to compute the
normalized cross-correlation function (CCF) for short time frames. The normalized CCF
is evaluated for time lags within maxDelaySec (e.g., [−1ms, 1ms]) and is thus a three-
dimensional function of lag time, time frame and frequency channel.

3.3.2 Cues

Interaural level difference (ildProc.m)

The interaural level difference (ILD) is estimated for individual frequency channels by
comparing the frame-based energy of the left and the right-ear IHC representations. The
ILD is expressed in dB and negative values indicate a sound source positioned at the
left-hand side, whereas a positive ILD reflects a source lateralized to the right-hand
side.

Interaural time difference (itdProc.m)

The interaural time difference (ITD) between the left and the right ear signal is estimated
by locating the time lag that corresponds to the most prominent peak in the normalized
CCF. This estimation is further refined by a parabolic interpolation stage (Jacovitti and
Scarano, 1993, May et al., 2011).

Interaural coherence (icProc.m)

The interaural coherence (IC) is estimated by determining the maximum value of the
normalized CCF. It has been suggested that the IC can be used to select time and frequency
instances where the binaural cues (ITDs and ILDs) are dominated by the direct sound of an
individual sound source, and thus, the corresponding binaural cues are likely to reflect the
true location of one of the active sources (Faller and Merimaa, 2004).

18

3.4 Planned extensions to the software

Ratemap (ratemapProc.m)

The ratemap represents a map of auditory nerve firing rate (Brown and Cooke, 1994) and
is frequently employed in computational auditory scene analysis (CASA) systems as a
spectral feature. The ratemap is computed for individual frequency channels by smoothing
the IHC signal representation with a leaky integrator that has a time constant of decaySec.
Then, the energy is integrated across time frames and thus the ratemap can be interpreted
as an auditory spectrogram.

Onset (onsetProc.m)

According to Bregman (1990), common onsets and offsets are important grouping principles
that are utilized by the human auditory system to organize and integrate sounds originating
from the same source across frequency. Onset are detected by measuring the frame-based
increase in energy. This detection is performed based on the logarithmically-scaled energy,
as suggested by Klapuri (1999).

Offset (offsetProc.m)

Similarly to onsets, offsets are detected by measuring the frame-based decrease in logarithmically-
scaled energy.

3.4 Planned extensions to the software

The flexibility offered by the object oriented approach allows the WP2 framework to be
easily extended. The main extensions will likely consist of adding new types of signals or
cues that are requested by other work packages. New processor, signal, and possibly filter
child classes will be added accordingly. Encapsulation then ensures that the addition of
new components will not affect existing content.

In addition to updates based on the requests from other work packages, the following
extensions are planned:

• As the number of available processors increases and the number of processing stages
multiplies, there is an increasing risk of memory leaks (particularly when using the
software in a scenario that includes feedback). As a precaution, a “garbage collector”
should be implemented for the manager, that finds and removes processors and
signals that are no longer in use.

19

3 Bottom-up auditory signal processing

• Similarly, having more processor types implies more parameters. Extensions to
facilitate parameter handling (both for the software users and developers) will be
designed.

• Extensions in which motor commands and/or proprioception are directly integrated
with signal processing functions, in order to model reflexive processing.

20

4 Reference

4.1 WP2 reference

Processor Parameters (type) Options
timeProc.m fsHz(int)

bRemoveDC(boolean)
bNormRMS(boolean)

gammatoneProc.m fsHz(int)
flow(double)
fhigh(double)
nERBs(double)
n(double)

innerhaircellProc.m fsHz(int)
ihcMethod(char) ’hilbert’, ’halfwave’,

’bernstein’ or ’dau’
autocorrelationProc.m fsHz(int)

bBandpass(boolean)
bCenterClip(boolean)
ccMethod(char) ’clc’, ’cc’ or ’sgn’
ccAlpha(double)

crosscorrelationProc.m fsHz(int)
maxDelaySec(double)

Table 4.1: List of available signal processors. A detailed description of the individual processors
can be found in Section 3.3.

21

Acronyms

ACF auto-correlation function

ASA auditory scene analysis

BM basilar membrane

CCF cross-correlation function

CASA computational auditory scene analysis

ERB equivalent rectangular bandwidth

ILD interaural level difference

ITD interaural time difference

IC interaural coherence

IHC inner hair cell

RMS root mean square

WP1 work package one

WP2 work package two

23

Bibliography

Bernstein, L. R., van de Par, S., and Trahiotis, C. (1999), “The normalized interaural
correlation: Accounting for NoSπ thresholds obtained with Gaussian and “low-noise”
masking noise,” Journal of the Acoustical Society of America 106(2), pp. 870–876.
(Cited on page 17)

Bregman, A. S. (1990), Auditory scene analysis: the perceptual organization of sound,
MIT Press. (Cited on pages 3 and 19)

Brown, G. J. and Cooke, M. P. (1994), “Computational auditory scene analysis,” Computer
Speech and Language 8(4), pp. 297–336. (Cited on page 19)

Cooke, M., Brown, G. J., Crawford, M., and Green, P. (1993), “Computational auditory
scene analysis: listening to several things at once,” Endeavour 17(4), pp. 186–190.
(Cited on page 4)

Dau, T., Püschel, D., and Kohlrausch, A. (1996), “A quantitative model of the “effective”
signal processing in the auditory system. I. Model structure,” Journal of the Acoustical
Society of America 99(6), pp. 3615–3622. (Cited on page 17)

Ellis, D. P. W. (1996), “Prediction-driven computational auditory scene analysis,” Ph.D.
thesis, Massachusetts Institute of Technology. (Cited on page 4)

Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R. (1980), “The Hearsay-II
speech understanding system: integrating knowledge to resolve uncertainty,” Computing
Surveys 12(2), pp. 213–253. (Cited on page 4)

Faller, C. and Merimaa, J. (2004), “Source localization in complex listening situations:
Selection of binaural cues based on interaural coherence,” Journal of the Acoustical
Society of America 116(5), pp. 3075–3089. (Cited on page 18)

Glasberg, B. R. and Moore, B. C. J. (1990), “Derivation of auditory filter shapes from
notched-noise data,” Hearing Research 47(1-2), pp. 103–138. (Cited on page 17)

Godsmark, D. and Brown, G. J. (1999), “A Blackboard Architecture for Computational
Auditory Scene Analysis,” Speech Commun. 27(3-4), pp. 351–366, URL http://dx.doi.
org/10.1016/S0167-6393(98)00082-X. (Cited on page 4)

25

http://dx.doi.org/10.1016/S0167-6393(98)00082-X
http://dx.doi.org/10.1016/S0167-6393(98)00082-X

Bibliography

Jacovitti, G. and Scarano, G. (1993), “Discrete time techniques for time delay estimation,”
IEEE Transactions on Signal Processing 41(2), pp. 525–533. (Cited on page 18)

Klapuri, A. (1999), “Sound onset detection by applying psychoacoustic knowledge,” in
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3089–3092. (Cited on page 19)

Lesser, V. R., Nawab, S. H., and Klassner, F. I. (1995), “IPUS: An architecture for
the integrated processing and understanding of signals,” Artificial Intelligence 77, pp.
129–171. (Cited on page 4)

Licklider, J. C. R. (1951), “A duplex theory of pitch perception,” Experientia 7(4), pp.
128–134. (Cited on page 17)

May, T., van de Par, S., and Kohlrausch, A. (2011), “A probabilistic model for robust
localization based on a binaural auditory front-end,” IEEE Transactions on Audio,
Speech, and Language Processing 19(1), pp. 1–13. (Cited on page 18)

Meddis, R. and Hewitt, M. J. (1991), “Virtual pitch and phase sensitivity of a computer
model of the auditory periphery. I: Pitch identification,” Journal of the Acoustical Society
of America 89(6), pp. 2866–2882. (Cited on page 17)

Rabiner, L. R. (1977), “On the use of autocorrelation analysis for pitch detection,”
IEEE Transactions on Audio, Speech, and Language Processing 25(1), pp. 24–33.
(Cited on page 18)

Søndergaard, P. L. and Majdak, P. (2013), “The auditory modeling toolbox,” in The
Technology of Binaural Listening, edited by J. Blauert, Springer, Heidelberg–New York
NY–Dordrecht–London, chap. 2, pp. 33–56. (Cited on page 17)

26

	1 Executive summary
	2 Overview of the Two!Ears software architecture
	2.1 Background
	2.2 Software architecture
	2.3 Overview of the report

	3 Bottom-up auditory signal processing
	3.1 Software design
	3.1.1 Processors
	3.1.2 Manager
	3.1.3 Data organization
	3.1.4 General overview

	3.2 Handling user requests
	3.2.1 Dependencies
	3.2.2 Feedback

	3.3 Available processors
	3.3.1 Signals
	3.3.2 Cues

	3.4 Planned extensions to the software

	4 Reference
	4.1 WP2 reference

	Acronyms
	Bibliography

